Skip to main content
Log in

Utilization of Horticultural Waste for Laccase Production by Trametes versicolor Under Solid-State Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Horticultural waste collected from a landscape company in Singapore was utilized as the substrate for the production of laccase under solid-state fermentation by Trametes versicolor. The effects of substrate particle size, types of inducers, incubation temperature and time, initial medium pH value, and moisture content on laccase production were investigated. The optimum productivity of laccase (8.6 U/g substrate) was achieved by employing horticultural waste of particle size greater than 500 μm and using veratryl alcohol as the inducer. The culture was at 30 °C for 7 days at moisture content of solid substrate of 85% and initial pH 7.0. The decolorization was also investigated in order to assess the degrading capability of the ligninolytic laccase obtained in the above-mentioned cultures. The decolorization degree of a model dye, phenol red, was around 41.79% in 72 h of incubation. By far, this is the first report on the optimization of laccase production by T. versicolor under solid-state fermentation using horticultural waste as the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thurton, C. F. (1994). Microbiology, 140, 19–26.

    Article  Google Scholar 

  2. Tzanov, T., Basto, C., Guebitz, G. M., & Cavaco-Paulo, A. (2003). Macromolecular Materials and Engineering, 288, 807–810.

    Article  CAS  Google Scholar 

  3. Setti, L., Giuliani, S., Spinozzi, G., & Pifferi, P. G. (1999). Enzyme and Microbial Technology, 25, 285–289.

    Article  CAS  Google Scholar 

  4. Timur, S., Pazarlıoglu, N., Pilloton, R., & Telefoncu, A. (2004). Sensors and Actuators B: Chemical, 97, 132–136.

    Article  Google Scholar 

  5. Vianello, F., Cambria, A., Ragusa, S., Cambria, M. T., Zennaro, L., & Rigo, R. (2004). Biosensors & Bioelectronics, 20, 315–321.

    Article  CAS  Google Scholar 

  6. Durán, N., & Esposito, E. (2000). Applied Catalysis B: Environmental, 28, 83–99.

    Article  Google Scholar 

  7. Pointing, S. B. (2001). Applied Microbiology and Biotechnology, 57, 20–33.

    Article  CAS  Google Scholar 

  8. Gelo-Pujic, M., Kim, H. H., Butlin, N. G., & Palmore, G. T. (1999). Applied and Environmental Microbiology, 65, 5515–5521.

    CAS  Google Scholar 

  9. Roure, M., Delattre, P., Froger, H. (1992). European Patent Applications EP0504005.

  10. Golz-Berner, K. Walzel, B., Zastrow, L., Doucet, O. (2004). International Patent Applications WO2004017931.

  11. Bauer, Ch G, Kuehn, A., Gajovic, N., Skorobogatko, O., Holt, P. J., Bruce, N. C., et al. (1999). Journal of Analytical Chemistry, 364, 179–183.

    CAS  Google Scholar 

  12. Call, H. P., & Mucke, I. (1997). Journal of Biotechnology, 53, 163–202.

    Article  CAS  Google Scholar 

  13. Nakamura, T. (1958). Biochimica et Biophysica Acta, 30, 44–52.

    Article  CAS  Google Scholar 

  14. Yaropolov, A. I., Skorobogatko, O. V., Vartanov, S. S., & Varfolomeyev, S. D. (1994). Applied Biochemistry and Biotechnology, 49, 257–280.

    Article  CAS  Google Scholar 

  15. Li, K. C., Xu, F., & Eriksson, K. E. L. (1999). Applied and Environmental Microbiology, 65, 2654–2660.

    CAS  Google Scholar 

  16. Xu, F. (1996). Biochemistry, 35, 7608–7614.

    Article  CAS  Google Scholar 

  17. Cantarella, G., Galli, C., & Gentili, P. (2003). Journal of Molecular Catalysis. B, Enzymatic, 22, 135–144.

    Article  CAS  Google Scholar 

  18. Johannes, C., & Majcherczyk, A. (2000). Applied and Environmental Microbiology, 66, 524–528.

    Article  CAS  Google Scholar 

  19. Kang, K.-H., Dec, J., Park, H., & Bollag, J.-M. (2002). Water Research, 36, 4907–4915.

    Article  CAS  Google Scholar 

  20. Pandey, A., Selavakumar, P., Soccol, C. R., & Nigam, P. (1999). Current Science, 77, 149–152.

    CAS  Google Scholar 

  21. Krishna, C. (2005). Critical Reviews in Biotechnology, 25, 1–30.

    Article  CAS  Google Scholar 

  22. Lorenzo, M., Moldes, D., Rodriguez-Couto, S., & Sanroman, A. (2002). Bioresource Technology, 82, 109–113.

    Article  CAS  Google Scholar 

  23. Pandey, A., Selvakumar, P., Soccol, C. R., & Nigam, P. (1999). Current Science, 77, 149–162.

    CAS  Google Scholar 

  24. Khoo, H. H., Tan, R. B. H., & Sagisaka, M. (2008). International Journal of Life Cycle Assessment (LCA), 13, 312–318.

    Article  CAS  Google Scholar 

  25. Wood and Horticultural Waste Recycling. (2008). Available from www.zerowastesg.com. Accessed 31 May 2009.

  26. Moldes, D., Gallego, P. P., Rodriguez-Couto, S., & Sanromán, A. (2003). Biotechnology Letters, 25, 491–495.

    Article  CAS  Google Scholar 

  27. Gómez, J., Pazos, M., Rodríguez-Couto, S., & Sanromán, M. A. (2005). Journal of Food Engineering, 68, 315–319.

    Article  Google Scholar 

  28. Rodríguez-Couto, S., & Sanromán, M. A. (2005). Journal of Food Engineering, 71, 208–213.

    Article  Google Scholar 

  29. Lorenzo, M., Moldes, D., Couto, R. S., & Sanroman, A. (2002). Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresource Technology, 82, 109–113.

    Article  CAS  Google Scholar 

  30. Vladimir, E., Eva, K., Nino, T., Eka, M., Tamar, K., & Spiros, N. A. (2009). World Journal of Microbiology & Biotechnology, 25, 331–339.

    Article  Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  32. Sani, R. K., Azmi, W., & Benerjee, U. C. (1998). Folic Microbiologica, 43, 85–88.

    Article  CAS  Google Scholar 

  33. Pandey, A., Soccol, C. R., & Mitchell, D. (2000). Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  34. Leonowicz, A., Cho, N. S., Luterek, J., Wilkolazka, A., Wotjas-Wasilewska, M., et al. (2001). Journal of Basic Microbiology, 41, 185–227.

    Article  CAS  Google Scholar 

  35. De Souza, C. G. M., Tychanowicz, G. K., De Souza, D. F., & Peralta, R. M. (2004). Journal of Basic Microbiology, 44, 129–136.

    Article  Google Scholar 

  36. Collins, P. J., Kotterman, M. J. J., Field, J. A., & Dobson, A. D. W. (1996). Applied and Environmental Microbiology, 62, 4563–4567.

    CAS  Google Scholar 

  37. Eggert, C., Temp, U., & Eriksson, K. E. (1996). ACS Symposium Series, 665, 130–150.

    Article  Google Scholar 

  38. Lee, I.-Y., Jung, K.-H., Lee, C.-H., & Park, Y.-H. (1999). Biotechnology Letters, 21, 965–968.

    Article  CAS  Google Scholar 

  39. Gianfreada, L., Xu, F., & Bollag, J. M. (1999). Bioremediation Journal, 3, 1–2.

    Article  Google Scholar 

  40. Tunga, R., Banerjee, R., & Bhattacharyya, B. C. (1998). Bioprocess Engineering, 19, 187–190.

    Article  CAS  Google Scholar 

  41. Rainbauet, M., & Alazrd, D. (1980). European Journal of Applied Microbiology and Biotechnology, 9, 199–209.

    Article  Google Scholar 

  42. Gowthaman, M. K., Krishna, C., & Moo-Young, M. (2001). Applied Mycology and Biotechnology, 1, 305–352.

    Article  CAS  Google Scholar 

  43. Lonsane, B. K., Ghildyal, N. P., Budiatman, S., & Ramakrishna, S. V. (1985). Enzyme and Microbial Technology, 7, 258–265.

    Article  CAS  Google Scholar 

  44. Chundakkadu, K. (2005). Critical Reviews in Biotechnology, 25, 1–30.

    Article  Google Scholar 

  45. Niladevi, K. N., Sukumaran, R. K., & Prema, P. (2007). Journal of Industrial Microbiology & Biotechnology, 34, 665–674.

    Article  CAS  Google Scholar 

  46. Vikineswary, S., Abdullah, N., Renuvathani, M., Sekaran, M., Pandey, A., & Jones, E. B. (2006). Bioresource Technology, 97, 171–177.

    Article  CAS  Google Scholar 

  47. Sarnthima, R., Khammuang, S., & Svasti, J. (2009). Biotechnology and Bioprocess Engineering, 14, 513–522.

    Article  CAS  Google Scholar 

  48. Moldesa, D., Lorenzoa, M., & Sanromán, M. Á. (2004). Process Biochemistry, 39, 1811–1815.

    Article  Google Scholar 

  49. Gomaa, O. M. (2005). International Journal of Agriculture and Biology, 7, 25–29.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support to this work from Singapore Totalisation Board and Ngee Ann Kongsi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anli Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, F., Geng, A. Utilization of Horticultural Waste for Laccase Production by Trametes versicolor Under Solid-State Fermentation. Appl Biochem Biotechnol 163, 235–246 (2011). https://doi.org/10.1007/s12010-010-9033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9033-x

Keywords

Navigation