Skip to main content
Log in

Lipase Immobilized on the Hydrophobic Polytetrafluoroethene Membrane with Nonwoven Fabric and Its Application in Intensifying Synthesis of Butyl Oleate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The synthesis of butyl oleate was studied in this paper with immobilized lipase. Five types of membrane were used as support to immobilize Rhizopus arrhizus lipase by following a procedure combining filtration and protein cross-linking. Results showed that hydrophobic polytetrafluoroethene membrane with nonwoven fabric (HO-PTFE-NF) was the favorite choice in terms of higher protein loading, activity, and specific activity of immobilized lipase. The factors including solvent polarity, lipase dosage, concentration, and molar ratio of substrate and temperature were found to have significant influence on conversion. Results showed that hexane (logP = 3.53) was a favorable solvent for the biosynthesis of butyl oleate in our studies. The optimal conditions were experimentally determined of 50 U immobilized lipase, molar ratio of oleic acid to butanol of 1.0, substrate concentration of 0.12 mol/L, temperature of 37 °C, and reaction time of 2 h. The conversion was beyond 91% and decreased slightly after 18 cycles. Lipase immobilization can improve the conversion and the repeated use of immobilized lipase relative to free lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kohashi, H. (1990). in: Proceedings of the world conference on oleochemicals: into the 21st Century. Amer Oil Chemists Society, pp 243–250.

  2. Linko, Y. Y., Rantanen, O., Yu, H. C., Linko, P., Tramper, J., & Vermüe, M. H. (1992). in: Biocatalysis in non-conventional media, progress in biotechnology (pp. 601–608). New York: Elsevier.

    Google Scholar 

  3. Linko, Y. Y., Lämsä, M., Huhtala, A., & Rantanen, O. (1995). Journal of the American Oil Chemists’ Society, 72, 1293–1299.

    Article  CAS  Google Scholar 

  4. Hills, G. (2003). European Journal of Lipid Science and Technology, 105, 601–607.

    Article  CAS  Google Scholar 

  5. Villeneuve, P., Muderhwa, J. M., Graille, J., & Haas, M. J. (2000). Journal of Molecular Catalysis. B, Enzymatic, 4, 113–148.

    Article  Google Scholar 

  6. Chang, S. W., Yang, C. J., Chen, F. Y., Akoh, C. C., & Shieh, C. J. (2009). Journal of Molecular Catalysis. B, Enzymatic, 56, 7–12.

    Article  CAS  Google Scholar 

  7. Yu, A., Liang, Z., & Caruso, F. (2005). Chemistry of Materials, 17, 171–175.

    Article  CAS  Google Scholar 

  8. Vafiadi, C., Topakas, E., Alissandratos, A., Faulds, C. B., & Christakopoulos, P. (2008). Journal of Biotechnology, 133, 497–504.

    CAS  Google Scholar 

  9. López Giraldo, L. J., Laguerre, M., Lecomte, J., Espinoza, M. C., Barouh, N., Baréa, B., et al. (2007). Enzyme and Microbial Technology, 41, 721–726.

    Article  Google Scholar 

  10. Cramer, J. F., Dueholm, M. S., Nielsen, S. B., Pedersen, D. S., Wimmer, R., & Pedersen, L. H. (2007). Enzyme and Microbial Technology, 41, 346–352.

    Article  CAS  Google Scholar 

  11. Habulin, M., & Knez, Z. (1991). Journal of Membrane Science, 61, 315–324.

    Article  CAS  Google Scholar 

  12. Ghamgui, H., Karra-Chaâbouni, M., & Gargouri, Y. (2004). Enzyme and Microbial Technology, 35, 355–363.

    Article  CAS  Google Scholar 

  13. Hughes, J. A., Zhou, S., Bhattacharyya, D., & Jay, M. (1991). Journal of Membrane Science, 60, 75–86.

    Article  CAS  Google Scholar 

  14. Ulbricht, M., & Papra, A. (1997). Enzyme and Microbial Technology, 20, 61–68.

    Article  CAS  Google Scholar 

  15. Magnan, E., Catarino, I., Paolucci-Jeanjean, D., Preziosi-Belloy, L., & Belleville, M. P. (2004). Journal of Membrane Science, 241, 161–166.

    Article  CAS  Google Scholar 

  16. Yu, J. G., Zhang, J. S., Zhao, A., & Ma, X. F. (2008). Catalysis Communications, 9, 1369–1374.

    Article  CAS  Google Scholar 

  17. Sousa, H. A., Crespo, J. G., & Afonso, C. A. M. (2000). Tetrahedron Asymmetry, 11, 929–934.

    Article  CAS  Google Scholar 

  18. Jolivalt, C., Brenon, S., Caminade, E., Mougin, C., & Pontié, M. (2000). Journal of Membrane Science, 180, 103–113.

    Article  CAS  Google Scholar 

  19. Dayal, R., & Godjevargova, T. (2006). Enzyme and Microbial Technology, 39, 1313–1318.

    Article  CAS  Google Scholar 

  20. Abrol, K., Qazi, G. N., & Ghosh, A. K. (2007). Journal of Biotechnology, 128, 838–848.

    Article  CAS  Google Scholar 

  21. Krajewska, B. (2004). Enzyme and Microbial Technology, 35, 126–139.

    Article  CAS  Google Scholar 

  22. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  23. Saisuburamaniyan, N., Krithika, L., Dileena, K. P., Sivasubramanian, S., & Puvanakrishnan, P. (2004). Analytical Biochemistry, 330, 70–73.

    Article  CAS  Google Scholar 

  24. Leitgeb, M., & Knez, Ž. (1990). Journal of the American Oil Chemists’ Society, 67, 775–778.

    Article  CAS  Google Scholar 

  25. Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.

    Article  CAS  Google Scholar 

  26. Chen, J. P. (1996). Journal of Fermentation and Bioengineering, 82, 404–407.

    Article  CAS  Google Scholar 

  27. Zaks, A., & Klibanov, A. M. (1985). Proceedings of the National Academy of Sciences of the United States of America, 82, 3192–3196.

    Article  CAS  Google Scholar 

  28. Lv, X. X., Pan, Y., & Li, Y. G. (2007). Food Chemistry, 101, 1626–1632.

    Article  CAS  Google Scholar 

  29. Zaks, A., & Klibanov, A. M. (1984). Sciences, 224, 1249–1251.

    Article  CAS  Google Scholar 

  30. Janssen, A. E. M., Padt, A. V., & Sonsbeek, H. M. V. (1993). Biotechnology and Bioengineering, 41, 95–103.

    Article  CAS  Google Scholar 

  31. Chaudhary, A. K., Kamat, S. V., Beckman, E. J., Nurok, D., Kleyle, R. M., Hajdu, P., et al. (1996). Journal of the American Chemical Society, 118, 12891–12901.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National High Technology Research and Development Program of China (863) (NO.2007AA06Z310) and the Foundation of Beijing University of Chemical Technology for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Dong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SG., Zhang, WD., Li, Z. et al. Lipase Immobilized on the Hydrophobic Polytetrafluoroethene Membrane with Nonwoven Fabric and Its Application in Intensifying Synthesis of Butyl Oleate. Appl Biochem Biotechnol 162, 2015–2026 (2010). https://doi.org/10.1007/s12010-010-8977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8977-1

Keywords

Navigation