Skip to main content
Log in

Monitoring of Cell Viability and Proliferation in Hydrogel-Encapsulated System by Resazurin Assay

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cell microencapsulation is a promising approach for cell implantation, cell-based gene therapy and large-scale cell culture. For better quality control, it is important to accurately measure the microencapsulated cell viability and proliferation in the culture. A number of assays have been used for this purpose, but limitations arise. In this study, we investigated the feasibility and reliability of resazurin as a cell growth indicator in microencapsulated culture system. According to the experiment data, there was a reversible, time- and dose-dependent growth inhibition as observed for resazurin application in encapsulated cells. A positive relationship was observed between reduction of resazurin and CHO cell number in microcapsule. Moreover, the resazurin assay provided an equivalent result to the commonly used MTT method in determining CHO cell proliferation in APA microcapsule with no notable influence on cell distribution and organization pattern. In conclusion, resazurin assay is offered as a simple, rapid and non-invasive method for in vitro microencapsulated cell viability and proliferation measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kung, I. M., Wang, F. F., Chang, Y. C., & Wang, Y. J. (1995). Biomaterials, 16, 649–655.

    Article  CAS  Google Scholar 

  2. Jones, L. J., Gray, M., Yue, S. T., Haugland, R. P., & Singer, V. L. (2001). Journal of Immunological Methods, 254, 85–98.

    Article  CAS  Google Scholar 

  3. Zhang, X. L., Wang, W., Xie, Y. B., Zhang, Y., Wang, X. L., Guo, X., et al. (2006). Applied Biochemistry and Biotechnology, 134, 61–76.

    Article  CAS  Google Scholar 

  4. Kedzlorek, D. A., Walczak, P., Fu, Y., Azone, N., Arepally, A., Bulte, J. W., et al. (2008). Circulation, 118, S519–S519.

    Article  Google Scholar 

  5. Kedzlorek, D. A., Walczak, P., Fu, Y., Azone, N., Arepally, A., Bulte, J. W., et al. (2009). Journal of the American College of Cardiology, 53, A453–A453.

    Google Scholar 

  6. Page, B., Page, M., & Noel, C. (1993). International Journal of Oncology, 3, 473–476.

    CAS  Google Scholar 

  7. Hamid, R., Rotshteyn, Y., Rabadi, L., Parikh, R., & Bullock, P. (2004). Toxicology in Vitro, 18, 703–710.

    Article  CAS  Google Scholar 

  8. Perrot, S. B., Dutertre, C. H., Martin, C., Warnet, J. M., & Rat, P. (2003). Cytometry Part A, 55A, 7–14.

    Article  CAS  Google Scholar 

  9. Shahan, T. A., Siegel, P. D., Sorenson, W. G., Kuschner, W. G., & Lewis, D. M. (1994). Journal of Immunological Methods, 175, 181–187.

    Article  CAS  Google Scholar 

  10. Nasiry, S., Geusens, N., Hanssens, M., Luyten, C., & Pijnenborg, R. (2007). Human Reproduction, 22, 1304–1309.

    Article  Google Scholar 

  11. Francois, S., Chakfe, N., Durand, B., & Laroche, G. (2009). Acta Biomaterialia, 5, 2418–2428.

    Article  CAS  Google Scholar 

  12. Galler, K. M., Cavender, A., Yuwono, V., Dong, H., Shi, S., Schmalz, G., et al. (2008). Tissue Engineering Part A, 14, 2051–2058.

    Article  CAS  Google Scholar 

  13. Tuschl, G., Hrach, J., Walter, Y., Hewitt, P. G., & Mueller, S. O. (2009). Chemico-Biological Interactions, 181, 124–137.

    Article  CAS  Google Scholar 

  14. Wilson, C. G., Sisco, P. N., Gadala, F. A., Murphy, C. J., & Goldsmith, E. C. (2009). Biomaterials, 30, 5639–5648.

    Article  CAS  Google Scholar 

  15. Ma, X. J., Vacek, I., & Sun, A. (1994). Artificial Cells Blood Substitutes and Immobilization Biotechnology, 22, 43–69.

    Article  CAS  Google Scholar 

  16. Goegan, P., Johnson, G., & Vincent, R. (1995). Toxicology in Vitro, 9, 257–266.

    Article  CAS  Google Scholar 

  17. Ahmed, S. A., Gogal, R. M., & Walsh, J. E. (1994). Journal of Immunological Methods, 170, 211–224.

    Article  CAS  Google Scholar 

  18. Larson, E. M., Doughman, D. J., Gregerson, D. S., & Obritsch, W. F. (1997). Investigative Ophthalmology and Visual Science, 38, 1929–1933.

    CAS  Google Scholar 

  19. Voytikharbin, S. L., Brightman, A. O., Waisner, B., Lamar, C. H., & Badylak, S. F. (1998). In Vitro Cellular and Developmental Biology-Animal, 34, 239–246.

    Article  CAS  Google Scholar 

  20. Squatrito, R. C., Connor, J. P., & Buller, R. E. (1995). Gynecologic Oncology, 58, 101–105.

    Article  CAS  Google Scholar 

  21. Back, S. A., Khan, R., Gan, X. D., Rosenberg, P. A., & Volpe, J. J. (1999). Journal of Neuroscience Methods, 91, 47–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation under Grant number 30970885 and National Key Sci-Tech Special Project of China under Grant number 2008ZX10002-019. We thank the many colleagues and collaborators who have contributed to the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J., Zhang, Y., Wang, J. et al. Monitoring of Cell Viability and Proliferation in Hydrogel-Encapsulated System by Resazurin Assay. Appl Biochem Biotechnol 162, 1996–2007 (2010). https://doi.org/10.1007/s12010-010-8975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-8975-3

Keywords

Navigation