Skip to main content
Log in

A Novel Serine Metallokeratinase from a Newly Isolated Bacillus pumilus A1 Grown on Chicken Feather Meal: Biochemical and Molecular Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A keratinolytic enzyme (KerA1) secreted by a newly isolated Bacillus pumilus strain A1 cultivated in medium containing chicken feather meal was purified and characterized, and the gene was isolated and sequenced. The molecular mass of the purified enzyme was estimated to be 34,000 Da by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the purified keratinase were 9.0 and 60 °C, respectively, using keratin as a substrate. KerA1 showed a high stability towards nonionic surfactants. It was found to be relatively stable toward the strong anionic surfactant (SDS). The deduced amino acid sequence of the keratinase KerA1 differs from both the organic solvent tolerant protease of B. pumilus 115b and the dehairing protease of B. pumilus UN-31-C-42 by one and nine amino acids, respectively. These results suggest that this keratinase may be a useful alternative and ecofriendly route for handling the abundant amount of waste feathers and for applications in detergent formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Onifade, A., Al-Sane, N. A., Al-Musalam, A. A., & Al-Zarban, S. (1998). Bioresource Technology, 66, 1–11.

    Article  CAS  Google Scholar 

  2. Gupta, R., & Ramnani, P. (2006). Applied Microbiology and Biotechnology, 70, 21–33.

    Article  CAS  Google Scholar 

  3. Fakhfakh, N., Kanoun, S., Manni, L., & Nasri, M. (2009). Canadian Journal of Microbiology, 55, 427–436.

    Article  CAS  Google Scholar 

  4. Kumar, C. G. (2002). Letters in Applied Microbiology, 34, 13–17.

    Article  CAS  Google Scholar 

  5. Williams, C. M., Lee, C. G., Garlich, J. D., & Shih, J. C. H. (1991). Poultry Science, 70, 85–94.

    CAS  Google Scholar 

  6. Odetallah, N. H., Wang, J. J., Garlich, J. D., & Shih, J. C. (2003). Poultry Science, 82, 664–670.

    CAS  Google Scholar 

  7. Langeveld, J. P., Wang, J. J., Van de Wiel, D. F., Shih, G. C., Garssen, G. J., Bossers, A., et al. (2003). Journal of Infectious Diseases, 188, 1782–1789.

    Article  CAS  Google Scholar 

  8. Huang, Q., Peng, Y., Li, X., Wang, H., & Zhang, Y. (2003). Current Microbiology, 46, 169–173.

    Article  CAS  Google Scholar 

  9. Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmi-Priya, T., & Annadurai, G. (2005). Enzyme and Microbial Technology, 36, 639–647.

    Article  CAS  Google Scholar 

  10. Suh, H. J., & Lee, H. K. (2001). Journal of Protein Chemistry, 20, 165–169.

    Article  CAS  Google Scholar 

  11. Cai, Cg, Chen, Js, Qi, Jj, Yin, Y., & Zheng, Xd. (2008). Journal of Zhejiang University. Science B, 9, 713–720.

    Article  CAS  Google Scholar 

  12. Bressollier, P., Letourneau, F., Urdaci, M., & Verneuil, B. (1999). Applied and Environmental Microbiology, 65, 2570–2576.

    CAS  Google Scholar 

  13. Tatineni, R., Doddapaneni, K. K., Potumarthi, R. C., Vellanki, R. N., Kandathil, M. T., Kolli, N., et al. (2008). Bioresource Technology, 99, 1596–1602.

    Article  CAS  Google Scholar 

  14. Syed, D. G., Lee, J. C., Li, W. J., Kim, C. J., & Agasar, D. (2009). Bioresource Technology, 100, 1868–1871.

    Article  CAS  Google Scholar 

  15. Takiuchi, I., Higuchi, D., Sei, Y., & Koga, M. (1982). Sabouraudia, 20, 281–288.

    CAS  Google Scholar 

  16. Kembhavi, A. A., Kulkarni, A., & Pant, A. (1993). Applied Biochemistry and Biotechnology, 38, 83–92.

    Article  CAS  Google Scholar 

  17. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  19. Garcia-Carreno, F. L., Dimes, L. E., & Haard, N. F. (1993). Analytical Biochemistry, 214, 65–69.

    Article  CAS  Google Scholar 

  20. Tsai, I. H., Chuang, K. L., & Chuang, J. L. (1986). Biochemistry and Molecular Biology, 85, 235–239.

    Article  Google Scholar 

  21. Pan, J., Huang, Q., & Zhang, Y. (2004). Current Microbiology, 49, 165–169.

    Article  CAS  Google Scholar 

  22. Haddar, A., Bougatef, A., Agrebi, R., Sellami-Kamoun, A., & Nasri, M. (2009). Process Biochemistry, 44, 29–35.

    Article  CAS  Google Scholar 

  23. Pillai, P., & Archana, G. (2008). Applied Microbiology and Biotechnology, 78, 643–650.

    Article  CAS  Google Scholar 

  24. Han, X. Q., & Damodaran, S. (1998). Journal of Agricultural and Food Chemistry, 46, 3596–3603.

    Article  CAS  Google Scholar 

  25. Miyaji, T., Otta, Y., Nakagawa, T., Watanabe, T., Niimura, Y., & Tomizuka, N. (2006). Letters in Applied Microbiology, 42, 242–247.

    Article  CAS  Google Scholar 

  26. Lin, X., Shih, J. C. H., & Swaisgood, H. E. (1996). Applied and Environmental Microbiology, 62, 4273–4275.

    CAS  Google Scholar 

  27. Radha, S., & Gunasekaran, P. (2008). Bioresource Technology, 99, 5528–5537.

    Article  CAS  Google Scholar 

  28. Manni, L., Jellouli, K., Agrebi, R., Bayoudh, A., & Nasri, M. (2008). Process Biochemistry, 43, 522–530.

    Article  CAS  Google Scholar 

  29. Kidd, R. D., Yennawar, H. P., Sears, P., Wong, C. H., & Farber, G. K. (1996). Journal of the American Chemical Society, 118, 1645–1650.

    Article  CAS  Google Scholar 

  30. Smith, C. A., Toogood, H. S., Baker, H. M., Daniel, R. M., & Baker, E. N. (1999). Journal of Molecular Biology, 294, 1027–1040.

    Article  CAS  Google Scholar 

  31. Lin, X., Lee, C. G., Casale, E. S., & Shih, J. C. H. (1992). Applied and Environmental Microbiology, 58, 3271–3275.

    CAS  Google Scholar 

  32. Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Bioresource Technology, 100, 3366–3373.

    Article  CAS  Google Scholar 

  33. Evans, K. L., Crowder, J. S., & Miller, E. S. (2000). Canadian Journal of Microbiology, 46, 1004–1011.

    Article  CAS  Google Scholar 

  34. Mignon, B., Swinnen, M., Bouchara, J. P., Hofinger, M., Nikkels, A., Pierard, G., et al. (1998). Medical Mycology, 36, 395–404.

    CAS  Google Scholar 

  35. Gioia, J., Yerrapragada, S., Qin, X., Jiang, H., Igboeli, O. C., Muzny, D., et al. (2007). SAFR-032 PLoS ONE, 2, e928.

    Article  Google Scholar 

  36. Abd Rahman, R. N. Z. R., Mahamad, S., Salleh, A. B., & Basri, M. (2007). Journal of Industrial Microbiology & Biotechnology, 34, 509–517.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by “Ministry of Higher Education, Scientific Research and Technology-Tunisia”. The authors would like to thank Mr. A. Hajji from the Faculty Letters and Human Sciences of Kairouan-Tunisia for his help with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahed Fakhfakh-Zouari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fakhfakh-Zouari, N., Hmidet, N., Haddar, A. et al. A Novel Serine Metallokeratinase from a Newly Isolated Bacillus pumilus A1 Grown on Chicken Feather Meal: Biochemical and Molecular Characterization. Appl Biochem Biotechnol 162, 329–344 (2010). https://doi.org/10.1007/s12010-009-8774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8774-x

Keywords

Navigation