Skip to main content

Advertisement

Log in

Optimizing Ethanol and Methane Production from Steam-pretreated, Phosphoric Acid-impregnated Corn Stover

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pretreatment is of vital importance in the production of ethanol and methane from agricultural residues. In this study, the effects of steam pretreatment with phosphoric acid on enzymatic hydrolysis (EH), simultaneous saccharification and fermentation (SSF), anaerobic digestion (AD) and the total energy output at three different temperatures were investigated. The effect of separating the solids for SSF and the liquid for AD was also studied and compared with using the whole slurry first in SSF and then in AD. Furthermore, the phosphoric acid was compared to previous studies using sulphuric acid or no catalyst. Using phosphoric acid resulted in higher yields than when no catalyst was used. However, compared with sulphuric acid, an improved yield was only seen with phosphoric acid in the case of EH. The higher pretreatment temperatures (200 and 210 °C) resulted in the highest yields after EH and SSF, while the highest methane yield was obtained with the lower pretreatment temperature (190 °C). The highest yield in terms of total energy recovery (78 %) was obtained after pretreatment at 190 °C, but a pretreatment temperature of 200 °C is, however, the best alternative since fewer steps are required (whole slurry in SSF and then in AD) and high product yields were obtained (76 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). Bioresource Technology, 101, 8915–8922.

    Article  CAS  Google Scholar 

  2. Menon, V., & Rao, M. (2012). Progress in Energy and Combustion Science, 38, 522–550.

    Article  CAS  Google Scholar 

  3. Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., & Saddler, J. (2006). Biotechnology and Bioengineering, 94, 851–861.

    Article  CAS  Google Scholar 

  4. Heitz, M., Capek-Ménard, E., Koeberle, P. G., Gagné, J., Chornet, E., Overend, R. P., Taylor, J. D., & Yu, E. (1991). Bioresource Technology, 35, 23–32.

    Article  CAS  Google Scholar 

  5. Ohgren, K., Galbe, M., & Zacchi, G. (2005). Applied Biochemistry and Biotechnology, 121, 1055–1067.

    Article  Google Scholar 

  6. Varga, E., Reczey, K., & Zacchi, G. (2004). Applied Biochemistry and Biotechnology, 113, 509–523.

    Article  Google Scholar 

  7. Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.

    Article  CAS  Google Scholar 

  8. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2008). Bioresource Technology, 99, 8940–8948.

    Article  CAS  Google Scholar 

  9. Qing, Q., Yang, B., & Wyman, C. E. (2010). Bioresource Technology, 101, 9624–9630.

    Article  CAS  Google Scholar 

  10. Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A. J., & Wyman, C. E. (2013). Biotechnology and Bioengineering, 110, 737–753.

    Article  CAS  Google Scholar 

  11. Yang, B., Dai, Z., Ding, S.-Y., & Wyman, C. E. (2011). Biofuels, 2, 421–450.

    Article  CAS  Google Scholar 

  12. Bondesson, P.-M., Galbe, M., & Zacchi, G. (2013). Biotechnology for Biofuels, 6, 11.

    Article  CAS  Google Scholar 

  13. Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Hägerdal, B. (1999). Biotechnology and Bioengineering, 63, 46–55.

    Article  CAS  Google Scholar 

  14. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). Enzyme and Microbial Technology, 24, 151–159.

    Article  CAS  Google Scholar 

  15. Larsson, S., Quintana-Sainz, A., Reimann, A., Nilvebrant, N. O., & Jonsson, L. J. (2000). Applied Biochemistry and Biotechnology, 84, 617–632.

    Article  Google Scholar 

  16. Gámez, S., González-Cabriales, J. J., Ramírez, J. A., Garrote, G., & Vázquez, M. (2006). Journal of Food Engineering, 74, 77–88.

    Article  Google Scholar 

  17. Um, B.-H., Karim, M. N., & Henk, L. L. (2003). Applied Biochemistry and Biotechnology, 105, 115–125.

    Article  Google Scholar 

  18. Vázquez, M., Oliva, M., Télles-Luis, S. J., & Ramírez, J. A. (2007). Bioresource Technology, 98, 3053–3060.

    Article  Google Scholar 

  19. Geddes, C. C., Peterson, J. J., Roslander, C., Zacchi, G., Mullinnix, M. T., Shanmugam, K. T., & Ingram, L. O. (2010). Bioresource Technology, 101, 1851–1857.

    Article  CAS  Google Scholar 

  20. Castro, E., Nieves, I. U., Mullinnix, M. T., Sagues, W. J., Hoffman, R. W., Feernández-Sandoval, M. T., Tian, Z., Rockwood, D. L., Tamang, B., & Ingram, L. O. (2014). Applied Energy, 125, 76–83.

    Article  CAS  Google Scholar 

  21. Negro, M. J., Alvarez, C., Ballesteros, I., Romero, I., Ballesteros, M., Castro, E., Manzanares, P., Moya, M., & Oliva, J. M. (2014). Bioresource Technology, 153, 101–107.

    Article  CAS  Google Scholar 

  22. Boonsombuti, A., Luengnaruemitchai, A., & Wongkasemjit, S. (2015). Preparative Biochemistry & Biotechnology, 45, 173–191.

    Article  CAS  Google Scholar 

  23. Palmqvist, E., Hahn-Hägerdal, B., Galbe, M., Larsson, M., Stenberg, K., Szengyel, Z., Tengborg, C., & Zacchi, G. (1996). Bioresource Technology, 58, 171–179.

    Article  CAS  Google Scholar 

  24. Taherzadeh, M. J., Liden, G., Gustafsson, L., & Niklasson, C. (1996). Applied Microbiology and Biotechnology, 46, 176–182.

    Article  CAS  Google Scholar 

  25. Hansen, T. L., Schmidt, J. E., Angelidaki, I., Marca, E., Jansen, J. I. C., Mosbæk, H., & Christensen, T. H. (2004). Waste Management, 24, 393–400.

    Article  CAS  Google Scholar 

  26. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Wolfe, J. (2008). Technical report. Golden, CO, USA: National Renewable Energy Laboratory.

    Google Scholar 

  27. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Technical report. Golden, CO, USA: National Renewable Energy Laboratory.

    Google Scholar 

  28. Ehrman, T. (1996). Technical report. Golden, CO, USA: National Renewable Energy Laboratory.

    Google Scholar 

  29. Sannigrahi, P., Kim, D. H., Jung, S., & Ragauskas, A. (2011). Energy & Environmental Science, 4, 1306–1310.

    Article  CAS  Google Scholar 

  30. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844.

    Article  CAS  Google Scholar 

  31. Kim, Y., Kreke, T., Hendrickson, R., Parenti, J., & Ladisch, M. R. (2013). Bioresource Technology, 135, 30–38.

    Article  CAS  Google Scholar 

  32. Sathitsuksanoh, N., Zhu, Z., & Zhang, Y. H. P. (2012). Cellulose, 19, 1161–1172.

    Article  CAS  Google Scholar 

  33. Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., & Zacchi, G. (2010). Biotechnology for Biofuels, 3, 16.

    Article  Google Scholar 

  34. Almeida, J. R. M., Modig, T., Petersson, A., Hahn-Hagerdal, B., Liden, G., & Gorwa-Grauslund, M. F. (2007). Journal of Chemical Technology and Biotechnology, 82, 340–349.

    Article  CAS  Google Scholar 

  35. Narendranath, N. V., Thomas, K. C., & Ingledew, W. M. (2001). Journal of Industrial Microbiology & Biotechnology, 26, 171–177.

    Article  CAS  Google Scholar 

  36. Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (1999). Journal of Bioscience and Bioengineering, 87, 169–174.

    Article  CAS  Google Scholar 

  37. Frigon, J. C., & Guiot, S. R. (2010). Biofuels, Bioproducts and Biorefining, 4, 447–458.

    Article  CAS  Google Scholar 

  38. Barakat, A., Monlau, F., Steyer, J.-F., & Carrere, H. (2012). Bioresource Technology, 104, 90–99.

    Article  CAS  Google Scholar 

  39. Vivekanand, V., Olsen, E. F., Eijsink, V. G. H., & Horn, S. J. (2013). Bioresource Technology, 127, 343–349.

    Article  CAS  Google Scholar 

  40. Pordesimo, L. O., Hames, B. R., Sokhansanj, S., & Edens, W. C. (2005). Biomass and Bioenergy, 28, 366–374.

    Article  CAS  Google Scholar 

  41. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The State Grid Corporation of China is most gratefully acknowledged for the financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pia-Maria Bondesson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondesson, PM., Dupuy, A., Galbe, M. et al. Optimizing Ethanol and Methane Production from Steam-pretreated, Phosphoric Acid-impregnated Corn Stover. Appl Biochem Biotechnol 175, 1371–1388 (2015). https://doi.org/10.1007/s12010-014-1358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1358-4

Keywords

Navigation