Skip to main content
Log in

Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Gymnoascella citrina produced two isoforms of endoglucanases (CMCase-I and -ІІ) under solid-state condition. Purified CMCase-I was novel because it was apparently holoenzyme in nature. The enzyme was monomeric as its native and subunit mass were almost the same, i.e., 43 and 42 kDa, respectively. E a for carboxymethylcellulose (CMC) hydrolysis was 36.2 kJ mol−1. The enzyme was stable over a pH range of 3.5–6.5, while temperature optimum was 55 °C. V max, K m and k cat for CMC hydrolysis were 39 U mg−1 protein, 6.25 mg CMC mL−1 and 27.5 s−1, respectively. The pKa1 and pKa2 of ionizable groups of active site were 2.8 and 7.4, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 33.5 kJ mol−1, ΔG* = 70.42 kJ mol−1 and ΔS* = −114.37 J mol−1 K−1. The removal of metals resulted into complete loss of enzymatic activity and was completely recovered in the presence of 1 mM Mn2+, whereas inhibition initiated at 5 mM. The other metals like Ca2+, Zn2+ and K1+ showed no inhibition up to 7 mM, Co2+ completely inhibited the activity, while Mg2+ could not recover the initial activity up to 7 mM. So we are reporting for the first time, kinetics and thermodynamics of CMCase-Ι from G. citrina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bisby FA, Ruggiero MA, Wilson KL, Cachuela-Palacio M, Kimani SW, Roskov YR, Soulier-Perkins A, Hertum JV eds (2005). Species 2000 & ITIS Catalogue of Life: 2005 Annual Checklist, UK

  2. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  3. Busto MD, Ortega N, Perez-Mateos M (1996) Kinetics and stability of cellulases of T. reesei. Biosource Technol 57:187–192

    Article  CAS  Google Scholar 

  4. Cho KK, Kim SC, Woo JH, Bok JD, Choi YJ (2000) Cloning and expression of endoglucanase gene from Fibrobacter succinogenes in Escherichia Coli. Enzyme Microb Technol 27:475–481

    Article  CAS  Google Scholar 

  5. Clark AJ, Yaguchi M (1985) The role of Carboxyl groups in the function of endo-ß-1,4-glucanase from Schizophyllum commune. Eur J Biochem 49:233–238

    Article  Google Scholar 

  6. Coughlan MP, Wood TM, Montenecourt BS, Mendels M (1985) Cellulase: production, properties and applications. Biochem Soc Trans 13:405–416

    CAS  Google Scholar 

  7. Dixon M, Webb EC (1979) Enzyme kinetics and enzyme inhibition and activation. In: Enzymes, vol 3. Academic Press, New York, pp 47–467

    Google Scholar 

  8. Doran JB, Aldrich HC, Ingram LO (1994) Saccharification and fermentation of sugarcane bagasse by Klebsiela. Biotechnol Bioeng 44:240–247

    Article  CAS  Google Scholar 

  9. DSM-Deushe Sammlung Von Mikroorganism und Zullkurturen GmbH (1989) (German collection of microorganisms and cell cultures.) Catalogue of strains, 4th edn. Braunschweig, Federal Republic of Germany, p 286

  10. Eshel D, Ben AR, Dinoor A, Prusky D (2000) Endoglucanase of Alternaria alternata. Phytology 90:1256–1262

    Article  CAS  Google Scholar 

  11. Godfrey T, West S (1996) Industrial enzymology. Macmillan, New York

    Google Scholar 

  12. Hakamada Y, Hatada Y, Koike K, Yoshimatsu T, Kawai S, Kobayashi T, Ito S (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic Bacillus strain. Biosci Biotech Biochem 64:2281–2289

    Article  CAS  Google Scholar 

  13. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  14. Horton HR, Moran LA, Och RS, Rawn JD, Scrimgeour KG (1996) Principles of biochemistry. Simmon and Schuster/A Viacom Company, NJ, pp 54–66

    Google Scholar 

  15. Hoshino E, Ito S (1997) Application of alkaline cellulases. In: Enzyme in detergency. Marcel Dekker, New York, pp 149–175

    Google Scholar 

  16. Howard RL, Abotsi E, Jansen van Rensburg EL, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    CAS  Google Scholar 

  17. Kibblewhite RP, Wong KKY (1999) Modificaiton of a commercial radiata pine kraft pulp using carbohydrate degrading enzyme. Appita J 52:300–304

    CAS  Google Scholar 

  18. Kim DW, Jeong YK, Jang YH, Lee JK (1994) Purification and characterization of endoglucanase and exoglucanase from T. viride. J Ferment Bioeng 7:363–369

    Article  Google Scholar 

  19. Kumble KD, Trivedi PN, Jaffar MB (1990) Purification and characterisation of two endoglucanases from Arthrobotrys oligospora. Indian J Biochem Biophys 27:146–150

    CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  21. Lin SB, Stutzenberger FJ (1995) Purification and characterization of the major β–1,4-endoglucoanase from Thermomonospora curcata. J Appl Bacteriol 79:447–453

    CAS  Google Scholar 

  22. Lucas R, Robles A, Garcia MT, Alvarez De Cienfuegos G, Galvez A (2001) Production, purification and properties of an endoglucanase produced by the hyphomycete Chalara (Syn. Thielaviopsis) paradoxa CH32. J Agric Food Chem 49:79–85

    Article  CAS  Google Scholar 

  23. Melnik MS, Gerner ML, Rabinovich ML (1999) A low molecular weight endoglucanase from Clostridium thermocellum similar to endoglucanase-C. The specificity effects on synthetic substrates and amino acide composition. Appl Biochem Microbiol 35:548–555

    Google Scholar 

  24. Muniswaran PKA, Charyulu NCLS (1994) Solid substrate fermentation of coconut coir pith for cellulase production. Enzyme Microb Technol 27:33–36

    Google Scholar 

  25. Nakamura K, Kitamura K (1983) Purification and some properties of cellulase active on crystalline cellulose from Cellulomonas uda. J Ferment Technol 61:379–382

    CAS  Google Scholar 

  26. Niaz M, Ghafoor MY, Jabbar A, Rasul E, Wahid A, Ahmed R, Rashid MH (2004) Isolation and purification of glucoamylases from Gymnoascella citrina under solid phase growth conditions. Int J Biol Biotechnol 1:15–23

    CAS  Google Scholar 

  27. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  Google Scholar 

  28. Perveen R, Rashid MH, Saleem M, Khalid AM, Rajoka MI (2006) Kinetic and thermodynamic properties of an immobilized glucoamylase from a mesophilic fungus, Arachniotus citrinus. Protein Peptide Lett 13(7):665–671

    Article  CAS  Google Scholar 

  29. Petre M, Zarnea G, Adrian P, Gheorghiu E (1999) Biodegradation and bioconversion of cellulose waste using bacterial and fungal cells immobilized in radiopolymerized hydrogels. Resour Conserv Recycl 27:309–332

    Article  Google Scholar 

  30. Rashid MH, Siddiqui KS (1997) Purification and characterization of β-glucosidase from Aspergillus niger NIAB 280. Folia Microbiol 42:544–550

    Article  CAS  Google Scholar 

  31. Rashid MH, Rajoka MI, Siddiqui KS, Shakoori AR (1997) Effect of different substrates on the simultaneous production of β-glucosidase and polysaccharides by Aspergillus niger NIAB-280. Pak J Zool 29:175–179

    CAS  Google Scholar 

  32. Rashid MH, Siddiqui KS (1998) Carboxyl group modification: high temperature activation of charge neutralized and charge reversed β-glucosidase from Aspergillus niger. Biotechnol Appl Biochem 27:231–237

    CAS  Google Scholar 

  33. Rashid MH, Shakoori AR, Rajoka MI, Siddiqui KS (1998) Monitoring of carboxyl group modification of β-glucosidase from Aspergillus niger NIAB-280 by native enzyme mobility shift assay (NEMSA). Pak J Zool 30:99–104

    CAS  Google Scholar 

  34. Rehm HJ, Reed G (1999) Enzymes for industrial application. In: Biotechnology. Wiley-VCH, Germany, pp 191–215

    Google Scholar 

  35. Saleem M, Rashid MH, Jabbar A, Perveen R, Khalid AM, Rajoka MI (2005) Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus. Process Biochem 40(2):849–855

    Article  CAS  Google Scholar 

  36. Shankaranand VS, Ramesh MV, Lonsane BK (1992) Idiosyncrasies of solid state fermentation system in the biosynthesis of metabolites by some bacterial and fungal cultures. Process Biochem 27:33–36

    Article  CAS  Google Scholar 

  37. Shankaranand VS, Lonsane B (1994) Ability of Aspergilus niger to tolerate metal ions and minerals in sold state fermentation system for the production of citric acid. Process Biochem 29:29–39

    Article  CAS  Google Scholar 

  38. Sharma P, Gupta JK, Vadehra DV, Dube DK (1990) Purification and properties of endoglucanase from Bacillus isolates. Enzyme Microb Technol 12:132–137

    Article  CAS  Google Scholar 

  39. Siddiqui KS, Azhar JJ, Rashid MH, Rajoka MI (1996) Activity and thermostability of carboxymethylcellulase from Aspergillus niger is strongly influenced by non-covalently attached polysaccharides. World J Microbiol Biotechnol 12:213–216

    Article  CAS  Google Scholar 

  40. Siddiqui KS, Azhar MJ, Rashid MH, Ghuri TM, Rajoka MI (1997) Purification and effect of Mn2+ on the activity of carboxymethylcellulases from A. niger and C. biazotea. Folia Microbiol 42:303–311

    Article  CAS  Google Scholar 

  41. Siddiqui KS, Najums Saqib AA, Rashid MH, Rajoka MI (2000) Carboxyl group modification significantly altered the kinetic properties of purified Carboxymethylcellulase from Aspergillus niger. Enzyme Microb Technol 27:467–474

    Article  CAS  Google Scholar 

  42. Theberge M, Lacaze P, Shareck F, Morosoli R, Kluepfel D (1992) Purification and characterization of an endoglucanase from Streptomyces lividans 66 and DNA sequence of the gene. Appl Environ Microbiol 58:815–820

    CAS  Google Scholar 

  43. Wagner FW (1988) Preparation of metal-free enzyme. In: Methods in enzymology, part-A. Academic Press, New York, pp 158

    Google Scholar 

  44. Wittmann S, Shareck F, Kluepfel D, Morosoli R (1994) Purificaiton and characterization of Celb endoglucanase from Streptomyces lividans-66 and DNA sequence of the encoding gene. Appl Environ Microbiol 60:1701–1703

    CAS  Google Scholar 

  45. Wood TM (1985) Properties of cellulolytic enzyme systems. Biochem Soc Trans 13:407–410

    CAS  Google Scholar 

  46. Yazdi MT, Radiford A, Keen JN, Woodward JR (1990) Purification of cellulytic enzymes. Enzyme Microb Technol 12:120–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was funded by Pakistan Atomic Energy Commission (PAEC), Islamabad. Technical assistance of G. A. Waseer is appreciated. We are thankful to Dr. M. Sajjad Mirza (Plant Micro-biotechnlogy Division, NIBGE) for proof reading of the manuscript. Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan, is highly acknowledged for providing the culture of Gymnoascella citrina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hamid Rashid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbar, A., Rashid, M.H., Javed, M.R. et al. Kinetics and thermodynamics of a novel endoglucanase (CMCase) from Gymnoascella citrina produced under solid-state condition. J Ind Microbiol Biotechnol 35, 515–524 (2008). https://doi.org/10.1007/s10295-008-0310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0310-4

Keywords

Navigation