Skip to main content
Log in

Characterization of Alcohol Dehydrogenase from Permeabilized Brewer's Yeast Cells Immobilized on the Derived Attapulgite Nanofibers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Alcohol dehydrogenase (ADH) from permeabilized brewer's yeast was immobilized on derived attapulgite nanofibers via glutaraldehyde covalent binding. The effect of immobilization on ADH activity, optimum temperature and pH, thermal, pH and operational stability, reusability of immobilized ADH, and bioreduction of ethyl 3-oxobutyrate (EOB) to ethyl(S)-3-hydroxybutyrate ((S)-EHB) by the immobilized ADH were investigated. The results show the immobilized ADH retained higher activity over wider ranges of pH and temperature than those of the free. The optimum temperature and pH were 7.5 and 35 °C, respectively, and 58% of the original activity was retented after incubation at 35 °C for 32 h. More importantly, in bioreduction of EOB mediated by immobilized ADH, the conversion of substrate and enantiomeric excess (ee) of product reached 88% and 99.2%, respectively, within 2 h and retained about 42% of the initial activity after eight cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu, M. A., Wei, Y. M., Zhao, L., Jiang, L., Zhu, X. B., & Qi, W. (2007). J Ind Microbiol Biotechnol, 34, 151–156. doi:10.1007/s10295-006-0179-z.

    Article  CAS  Google Scholar 

  2. Yu, M. A., Hou, Y., Gong, G. H., Zhao, Q., Zhu, X. B., Jiang, L., et al. (2009). J Ind Microbiol Biotechnol, 36, 157–162. doi:10.1007/s10295-008-0483-x.

    Article  CAS  Google Scholar 

  3. Zhang, J., Witholt, B., & Li, Z. (2006). Chem Commun, 4, 39–400. doi:10.1039/b515721h.

    Google Scholar 

  4. Zhang, J., Witholt, B., & Li, Z. (2006). Adv Synth Catal, 348, 429–433. doi:10.1002/adsc.200505439.

    Article  CAS  Google Scholar 

  5. Daußmann, T., Rosen, T. C., & Dünkelmann, P. (2006). Eng Life Sci, 6, 125–129. doi:10.1002/elsc. 200620910.

    Article  Google Scholar 

  6. Sheldon, R. A. (2007). Adv Synth Catal, 349, 1289–1307. doi:10.1002/adsc.200700082.

    Article  CAS  Google Scholar 

  7. Erdemir, S., & Yilmaz, M. (2008). J Mol Catal B: Enzym, . doi:10.1016/j.molcatb.2008.11.008.

    Google Scholar 

  8. Temiño, D. M., Hartmeier, W., & Ansorge-Schumacher, M. B. (2005). Enzyme Microb Technol, 36, 3–9. doi:10.1016/j.enzmictec.2004.01.013.

    Article  Google Scholar 

  9. Goldberg, K., Krueger, A., Meinhardt, T., Kroutil, W., Mautner, B., & Liese, A. (2008). Tetrahedron Asymmetry, 19, 1171–1173. doi:10.1016/j.tetasy.2008.04.034.

    Article  CAS  Google Scholar 

  10. Bolivar, J. M., Wilson, L., Ferrarotti, S. A., Guisán, J. M., Fernández-Lafuente, R., & Mateo, C. (2006). J Biotechnol, 125, 85–94. doi:10.1016/j.jbiotec.2006.01.028.

    Article  CAS  Google Scholar 

  11. Katchalski-Katzir, E., & Kraemer, D. M. (2000). J Mol Catal B: Enzym, 10, 157–176. doi:S1381-1177-00.00124-7.

    Article  CAS  Google Scholar 

  12. Zhang, L., Jiang, Y. J., Shi, J. F., Sun, X. H., Li, J., & Jiang, Z. Y. (2008). Reactive and Functional Polymers, 68, 1507–1515. doi:10.1016/j.reactfunctpolym.2008.08.007.

    Article  CAS  Google Scholar 

  13. Soni, S., Desai, J. D., & Devi, S. (2001). J Appl Polym Sci, 82, 1299–1305.

    Article  CAS  Google Scholar 

  14. Sinegani, A. A. S., Emtiazi, G., & Shariatmadari, H. (2005). J Colloid Interface Sci, 290, 39–44. doi:10.1016/j.jcis.2005.04.030.

    Article  Google Scholar 

  15. Sanjay, G., & Sugunan, S. (2008). J Porous Mater, 15, 359–367. doi:10.1007/s10934-006-9089-8.

    Article  CAS  Google Scholar 

  16. Liao, M. H., & Chen, D. W. (2001). Biotechnological Letters, 32, 1723–1727.

    Article  Google Scholar 

  17. Seetharam, G., & Saville, B. A. (2002). Enzyme Microb Technol, 31, 747–753. doi:S0141-0229(02)00182-5.

    Article  CAS  Google Scholar 

  18. Yeşim, Yeşiloğlu. (2005). Process Biochem, 40, 2155–2159. doi:10.1016/j.procbio.2004.08.008.

    Article  Google Scholar 

  19. Prodanovic, R. M., Simic, M. B., & Vujcic, Z. M. (2003). J Serb Chem Soc, 68, 819–824. udc: 542.943+664. 164:541. 183+ 679.91+547.458.2.

    Article  CAS  Google Scholar 

  20. Zhang, J. P., Wang, Q., & Wang, A. (2007). Carbohydrate Polymers, 68, 367–374. doi:10.1016/j.carbpol.2006.11.018.

    Article  CAS  Google Scholar 

  21. Liu, Y. S., Liu, P., & Su, Z. X. (2008). J Appl Polym Sci, 107, 2082–2088. doi:10.1002/app.27358.

    Article  CAS  Google Scholar 

  22. Tian, M., Qu, C. D., Feng, Y. X., & Zhang, L. Q. (2003). J Mater Sci, 38, 4917–4924.

    Article  CAS  Google Scholar 

  23. Li, G. Y., Huang, K. L., Jiang, Y. R., Yang, D. L., & Ding, P. (2008). International Journal of Biological Macromolecules, 42, 405–412. doi:10.1016/j.ijbiomac.2008.01.005.

    Article  CAS  Google Scholar 

  24. He, H. P., Duchet, J., Galy, J., & Gerard, J. F. (2005). J Colloid Interface Sci, 288, 171–176. doi:10.1016/j.jcis.2005.02.092.

    Article  CAS  Google Scholar 

  25. Vallee, B. L., & Hoch, F. L. (1955). Proc Nat Acad Sci, 41, 327–338.

    Article  CAS  Google Scholar 

  26. Siperko, L. M., Jacquet, R., & Landis, W. J. (2006). J Biomed Mater Res, 78A, 808–822. doi:10.1002/jbm.a.30731.

    Article  CAS  Google Scholar 

  27. Marty, J. L. (1985). Applied Microbiology and Biotechnology, 22, 88–91.

    Article  CAS  Google Scholar 

  28. Erginer, R., Toppare, L., Alkan, S., & Bakir, U. (2000). React Funct Polym, 45, 227–233. doi:S1381-5148(00)00036-5.

    Article  CAS  Google Scholar 

  29. Rosen, T. C., Daussmann, T., & Stohrer, J. (2004). Speciality Chem Mag, 24, 39–40.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the special fund of three items of expenditure on Science and Technology Department of Central District in ChongQing. We also thank the Chongqing Medical University for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-An Yu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 169 kb)

(PDF 500 kb)

(PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Hou, Y., Gong, GH. et al. Characterization of Alcohol Dehydrogenase from Permeabilized Brewer's Yeast Cells Immobilized on the Derived Attapulgite Nanofibers. Appl Biochem Biotechnol 160, 2287–2299 (2010). https://doi.org/10.1007/s12010-009-8692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8692-y

Keywords

Navigation