Skip to main content
Log in

Characterization of a Recombinant Thermostable Dehalogenase Isolated from the Hot Spring Thermophile Sulfolobus tokodaii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A putative dehalogenase, l-HADST, from the thermophile Sulfolobus tokodaii, was cloned and expressed in Escherichia coli. The recombinant enzyme catalyzes the stereospecific dehalogenation of l-2-haloacids with similar levels of activity as its homolog from mesophiles. l-HADST remains fully active after being incubated for 4 h at 70 °C and tolerates extreme pH conditions ranging from 4 to 10. Furthermore, it can be purified conveniently without the usage of any chromatography method. The high expression yield and easy purification procedure make the recombinant dehalogenase an excellent candidate for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bell, J. (1989). The polymerase chain-reaction. Immunology Today, 10, 351–355. doi:10.1016/0167-5699(89)90193-X.

    Article  CAS  Google Scholar 

  2. White, T. J., Arnheim, N., & Erlich, H. A. (1989). The polymerase chain-reaction. Trends in Genetics, 5, 185–189. doi:10.1016/0168-9525(89)90073-5.

    Article  CAS  Google Scholar 

  3. Chaudhry, G. R., & Chapalamadugu, S. (1991). Biodegradation of halogenated organic-compounds. Microbiological Reviews, 55, 59–79.

    CAS  Google Scholar 

  4. Fetzner, S., & Lingens, F. (1994). Bacterial dehalogenases-biochemistry, genetics, and biotechnological applications. Microbiological Reviews, 58, 641–685.

    CAS  Google Scholar 

  5. van Pee, K. H., & Unversucht, S. (2003). Biological dehalogenation and halogenation reactions. Chemosphere, 52, 299–312. doi:10.1016/S0045-6535(03)00204-2.

    Article  Google Scholar 

  6. Baxter-Plant, V. S., Mikheenko, I. P., Robson, M., Harrad, S. J., & Macaskie, L. E. (2004). Dehalogenation of chlorinated aromatic compounds using a hybrid bioinorganic catalyst on cells of desulfiovibrio desulfuricans. Biotechnology Letters, 26, 1885–1890. doi:10.1007/s10529-004-6039-x.

    Article  CAS  Google Scholar 

  7. Bayless, W., & Andrews, R. C. (2008). Biodegradation of six haloacetic acids in drinking water. Journal of Water and Health, 6, 15–22. doi:10.2166/wh.2007.002.

    Article  CAS  Google Scholar 

  8. Bhatt, P., Kumar, M. S., Mudliar, S., & Chakrabarti, T. (2007). Biodegradation of chlorinated compounds—A review. Critical Reviews in Environmental Science and Technology, 37, 165–198. doi:10.1080/10643380600776130.

    Article  CAS  Google Scholar 

  9. Erable, B., Goubet, I., Lamare, S., Legoy, M. D., & Maugard, T. (2004). Haloalkane hydrolysis by rhodococcus erythropolis cells: Comparison of conventional aqueous phase dehalogenation and nonconventional gas phase dehalogenation. Biotechnology and Bioengineering, 86, 47–54. doi:10.1002/bit.20035.

    Article  CAS  Google Scholar 

  10. Erable, B., Goubet, I., Lamare, S., Legoy, M. D., & Maugard, T. (2006). Bioremediation of halogenated compounds: Comparison of dehalogenating bacteria and improvement of catalyst stability. Chemosphere, 65, 1146–1152. doi:10.1016/j.chemosphere.2006.04.007.

    Article  CAS  Google Scholar 

  11. Hardman, D. J. (1991). Biotransformation of halogenated compounds. Critical Reviews in Biotechnology, 11, 1–40. doi:10.3109/07388559109069182.

    Article  CAS  Google Scholar 

  12. Hiraishi, A. (2008). Biodiversity of dehalorespiring bacteria with special emphasis on polychlorinated biphenyl/dioxin dechlorinators. Microbes and Environments, 23, 1–12. doi:10.1264/jsme2.23.1.

    Article  Google Scholar 

  13. McRae, B. M., LaPara, T. M., & Hozalski, R. M. (2004). Biodegradation of haloacetic acids by bacterial enrichment cultures. Chemosphere, 55, 915–925. doi:10.1016/j.chemosphere.2003.11.048.

    Article  CAS  Google Scholar 

  14. Neilson, A. H. (1990). The biodegradation of halogenated organic-compounds—a review. The Journal of Applied Bacteriology, 69, 445–470.

    CAS  Google Scholar 

  15. Kawarabayasi, Y., Hino, Y., Horikawa, H., Jin-no, K., Takahashi, M., Sekine, M., et al. (2001). Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Research, 8, 123–140. doi:10.1093/dnares/8.4.123.

    Article  CAS  Google Scholar 

  16. Kurihara, T., Esaki, N., & Soda, K. (2000). Bacterial 2-haloacid dehalogenases: Structures and reaction mechanisms. Journal of Molecular Catalysis. B, Enzymatic, 10, 57–65. doi:10.1016/S1381-1177(00)00108-9.

    Article  CAS  Google Scholar 

  17. Liu, J. Q., Kurihara, T., Hasan, A., Nardidei, V., Koshikawa, H., Esaki, N., et al. (1994). Purification and characterization of thermostable and nonthermostable 2-haloacid dehalogenases with different stereospecificities from Pseudomonas sp strain YL. Applied and Environmental Microbiology, 60, 2389–2393.

    CAS  Google Scholar 

  18. Baker-Austin, C., & Dopson, M. (2007). Life in acid: Ph homelostasis in acidophiles. Trends in Microbiology, 15, 165–171. doi:10.1016/j.tim.2007.02.005.

    Article  CAS  Google Scholar 

  19. Hisano, T., Hata, Y., Fujii, T., Liu, J. Q., Kurihara, T., Esaki, N., et al. (1996). Crystal structure of l-2-haloacid dehalogenase from Pseudomonas sp YL—an alpha/beta hydrolase structure that is different from the alpha/beta hydrolase fold. The Journal of Biological Chemistry, 271, 20322–20330. doi:10.1074/jbc.271.34.20322.

    Article  CAS  Google Scholar 

  20. Newman, J., Peat, T. S., Richard, R., Kan, L., Swanson, P. E., Affholter, J. A., et al. (1999). Haloalkane dehalogenases: Structure of a rhodococcus enzyme. Biochemistry, 38, 16105–16114. doi:10.1021/bi9913855.

    Article  CAS  Google Scholar 

  21. Ridder, I. S., Rozeboom, H. J., Kalk, K. H., Janssen, D. B., & Dijkstra, B. W. (1997). Three-dimensional structure of l-2-haloacid dehalogenase from Xanthobacter autotrophicus gj10 complexed with the substrate-analogue formate. The Journal of Biological Chemistry, 272, 33015–33022. doi:10.1074/jbc.272.52.33015.

    Article  CAS  Google Scholar 

  22. Kurihara, T., Liu, J. Q., Nardidei, V., Koshikawa, H., Esaki, N., & Soda, K. (1995). Comprehensive site-directed mutagenesis of l-2-haloacid dehalogenase to probe catalytic amino acid residues. Journal of Biochemistry, 117, 1317–1322.

    CAS  Google Scholar 

  23. Liu, J. Q., Kurihara, T., Miyagi, M., Esaki, N., & Soda, K. (1995). Reaction-mechanism of l-2-haloacid dehalogenase of Pseudomonas sp. Yl—identification of asp10 as the active site nucleophile by o18 incorporation experiments. The Journal of Biological Chemistry, 270, 18309–18312. doi:10.1074/jbc.270.31.18309.

    Article  CAS  Google Scholar 

  24. Rye, C. A., Isupov, M. N., Lebedev, A. A., & Littlechild, J. A. (2007). An order-disorder twin crystal of l-2-haloacid dehalogenase from Sulfolobus tokodaii. Acta Crystallographica. Section D, Biological Crystallography, 63, 926–930. doi:10.1107/S0907444907026315.

    Article  Google Scholar 

  25. Meller, J., & Elber, R. (2001). Linear programming optimization and a double statistical filter for protein threading protocols. Proteins-Structure Function and Genetics, 45, 241–261. doi:10.1002/prot.1145.

    Article  CAS  Google Scholar 

  26. Teodorescu, O., Galor, T., Pillardy, J., & Elber, R. (2004). Enriching the sequence substitution matrix by structural information. Proteins-Structure Function and Bioinformatics, 54, 41–48. doi:10.1002/prot.10474.

    Article  CAS  Google Scholar 

  27. Tobi, D., & Elber, R. (2000). Distance-dependent, pair potential for protein folding: Results from linear optimization. Proteins-Structure Function and Genetics, 41, 40–46. doi:10.1002/1097-0134(20001001)41:1<40::AID-PROT70>3.0.CO;2-U.

    Article  CAS  Google Scholar 

  28. Li, Y. F., Hata, Y., Fujii, T., Hisano, T., Nishihara, M., & Kurihara, T. (1998). Crystal structures of reaction intermediates of l-2-haloacid dehalogenase and implications for the reaction mechanism. The Journal of Biological Chemistry, 273, 15035–15044. doi:10.1074/jbc.273.24.15035.

    Article  CAS  Google Scholar 

  29. Ridder, I. S., Rozeboom, H. J., Kalk, K. H., & Dijkstra, B. W. (1999). Crystal structures of intermediates in the dehalogenation of haloalkanoates by l-2-haloacid dehalogenase. The Journal of Biological Chemistry, 274, 30672–30678. doi:10.1074/jbc.274.43.30672.

    Article  CAS  Google Scholar 

  30. Kumar, S., & Nussinov, R. (2001). How do thermophilic proteins deal with heat. Cellular and Molecular Life Sciences, 58, 1216–1233. doi:10.1007/PL00000935.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Institute of Environmental Health Sciences (NIH, grant P42 ES07380). We acknowledge the use of the circular dichroism spectrometer at the Protein Core facility housed in the Department of Molecular and Cellular Biochemistry, University of Kentucky and directed by Dr. David Rodgers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinan Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachas-Daunert, P.G., Law, S.A. & Wei, Y. Characterization of a Recombinant Thermostable Dehalogenase Isolated from the Hot Spring Thermophile Sulfolobus tokodaii . Appl Biochem Biotechnol 159, 382–393 (2009). https://doi.org/10.1007/s12010-009-8589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8589-9

Keywords

Navigation