Skip to main content
Log in

Salicylic-Acid-Mediated Enhanced Biological Treatment of Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Activated sludge represents a microbial community which is responsible for reduction in pollution load from wastewaters and whose performance depends upon the composition and the expression of degradative capacity. In the present study, the role of salicylic acid (SA) has been evaluated for acclimatization of activated sludge collected from a combined effluent treatment plant followed by analysis of the physiological performance and microbial community of the sludge. The biodegradative capacity of the acclimatized activated sludge was further evaluated for improvement in efficiency of chemical oxygen demand (COD) removal from wastewater samples collected from industries manufacturing bulk drugs and dyes and dye intermediates (wastewater 1) and from dye industry (wastewater 2). An increase in COD removal efficiency from 50% to 58% and from 78% to 82% was observed for wastewater 1 and wastewater 2, respectively. Microbial community analysis data showed selective enrichment and change in composition due to acclimatization by SA, with 50% of the clones showing sequence homology to unidentified and uncultured bacteria. This was demonstrated by analysis of partial 16S rDNA sequence data generated from dominating clones representing the metagenome which also showed the appearance of a unique population of clones after acclimatization, which was distinct from those obtained before acclimatization and clustered away from the dominating population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Soulas, G., Codaccioni, P., & Fournier, J. C. (1983). Effect of cross-treatment on the subsequent breakdown of 2,4-D, MCPA and 2,4,5-T in the soil behaviour of the degrading microbial populations. Chemosphere, 12(7–8), 1101–1106. doi:10.1016/0045-6535(83)90263-1.

    CAS  Google Scholar 

  2. Kapley, A., Tolmare, A., & Purohit, H. J. (2001). Role of oxygen in the utilization of phenol by Pseudomonas CF600 in continuous culture. World Journal of Microbiology & Biotechnology, 17, 801–804. doi:10.1023/A:1013526001972.

    Article  CAS  Google Scholar 

  3. Kutty, R., Purohit, H. J., & Khanna, P. (2000). Isolation and characterization of a Pseudomonas sp. strain PH1 utilizing meta-aminophenol. Canadian Journal of Microbiology, 46, 211–217. doi:10.1139/cjm-46-3-211.

    Article  CAS  Google Scholar 

  4. Moharikar, A., & Purohit, H. J. (2003). Specific ratio and survival of Pseudomonas CF600 as co-culture for the phenol degradation in continuous cultivation. International Biodeterioration & Biodegradation, 52, 255–260. doi:10.1016/S0964-8305(03)00114-8.

    Article  CAS  Google Scholar 

  5. Qureshi, A. A., & Purohit, H. J. (2002). Isolation of consortia for the degradation of p-nitrophenol from agricultural soil. The Annals of Applied Biology, 140, 159–162. doi:10.1111/j.1744-7348.2002.tb00168.x.

    Article  CAS  Google Scholar 

  6. Qureshi, A., Verma, V., Kapley, A., & Purohit, H. J. (2007). Degradation of 4-nitoaniline by Stenotrophomonas strain HPC 135. International Biodeterioration & Biodegradation, 60(4), 215–218. doi:10.1016/j.ibiod.2007.03.004.

    Article  CAS  Google Scholar 

  7. Selvakumaran, S., Kapley, A., Kalia, V. C., & Purohit, H. J. (2007). Phenotypic and phylogenic groups to evaluate the diversity of Citrobacter isolates from activated biomass of effluent treatment plants. Bioresource Technology, 99(5), 1189–1195. doi:10.1016/j.biortech.2007.02.021.

    Article  Google Scholar 

  8. Thangaraj, K., Kapley, A., & Purohit, H. J. (2007). Characterization of diverse Acinetobacter isolates for utilization of multiple aromatic compounds. Bioresource Technology, 99(7), 2488–2494. doi:10.1016/j.biortech.2007.04.053.

    Article  Google Scholar 

  9. Buitron, G., Gonzalez, A., & Lopez-Marin, L. M. (1998). Biodegradation of phenolic compounds by an acclimated activated sludge and isolated bacteria. Water Science and Technology, 31(4–5), 371–378. doi:10.1016/S0273-1223(98)00133-4.

    Article  Google Scholar 

  10. Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2008). Phenol-mediated improved performance of active biomass for treatment of distillery wastewater. International Biodeterioration & Biodegradation, 62, 38–45. doi:10.1016/j.ibiod.2007.06.016.

    Article  CAS  Google Scholar 

  11. Khardenavis, A. A., Kapley, A., & Purohit, H. J. (2006). In V. Murugesan, R. Jayabalou, S. Nanjundan & M. Palanichamy (Eds.), Strategies for waste management: Stabilization of upflow anaerobic reactor for dechlorination of substituted chlorophenols. Proceedings of the 8th AANESWM, Anna University, Chennai, Dec. 10–13, pp. 227–234.

  12. Price, C. T. D., Lee, I. R., & Gustafson, J. E. (2000). The effects of salicylate on bacteria. The International Journal of Biochemistry & Cell Biology, 32, 1029–1043. doi:10.1016/S1357-2725(00)00042-X.

    Article  CAS  Google Scholar 

  13. Rosner, J. L. (1985). Nonheritable resistance to chloramphenicol and other antibiotics induced by salicylates and other chemotactic repellents in Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America, 82, 8771–8774. doi:10.1073/pnas.82.24.8771.

    Article  CAS  Google Scholar 

  14. Cohen, S. P., Foulds, J. J., Levy, S. B., & Rosner, L. (1993). Salicylate induction of antibiotic resistance in Escherichia coli: Activation of mar operon and mar-independent pathway. Journal of Bacteriology, 175, 7856–7862.

    CAS  Google Scholar 

  15. Purohit, H. J., Kapley, A., Moharikar, A., & Narde, G. (2003). Extraction of activated biological sludge for PCR compatible DNA from effluent treatment systems. Journal of Microbiological Methods, 52, 315–323. doi:10.1016/S0167-7012(02)00185-9.

    Article  CAS  Google Scholar 

  16. Kapley, A., Baere, T.-De., & Purohit, H. J. (2007). Eubacterial diversity of activated biomass from a common effluent treatment plant. Research in Microbiology, 158(6), 494–500. doi:10.1016/j.resmic.2007.04.004.

    Article  CAS  Google Scholar 

  17. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, J. D. (1997). The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. doi:10.1093/nar/25.24.4876.

    Article  CAS  Google Scholar 

  18. American Public Health Association. American Water Works Association, Water Environment Federation (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC, USA: APHA.

    Google Scholar 

  19. Fredrickson, A. G., & Stephanopoulus, G. N. (1981). Microbial competition. Science, 213, 972–979. doi:10.1126/science.7268409.

    Article  CAS  Google Scholar 

  20. Ratsak, C. H., Koouman, S. A. L. M., & Kooi, B. W. (1993). Modelling the growth of an oligochaete on activated sludge. Water Research, 27(5), 739–747. doi:10.1016/0043-1354(93)90136-6.

    Article  CAS  Google Scholar 

  21. Alexander, M. (1973). Nonbiodegradable and other recalcitrant molecules. Biotechnology and Bioengineering, 15, 611–647. doi:10.1002/bit.260150402.

    Article  CAS  Google Scholar 

  22. Dojka, M. A., Hugenholtz, P., Haack, S. K., & Pace, N. R. (1998). Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Applied and Environmental Microbiology, 64(10), 3869–3877.

    CAS  Google Scholar 

  23. Popp, N., Schlomann, M., & Mau, M. (2006). Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology, 152(11), 3291–3304. doi:10.1099/mic.0.29054-0.

    Article  CAS  Google Scholar 

  24. Whiteley, A. S., & Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system. Applied and Environmental Microbiology, 66(6), 2400–2407. doi:10.1128/AEM.66.6.2400-2407.2000.

    Article  CAS  Google Scholar 

  25. Kuniki, K., Murakami-Nitta, T., Oishi, M., Ishiguro, S., & Kirimura, K. (2004). Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide. Journal of Bioscience and Bioengineering, 97(1), 82–84.

    Google Scholar 

  26. Lorah, M., & Voytek, M. (2004). Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: Biogeochemical controls and associations with microbial communities. Journal of Contaminant Hydrology, 70(1–2), 117–145. doi:10.1016/j.jconhyd.2003.08.010.

    Article  CAS  Google Scholar 

  27. Scow, K. M., & Hicks, K. A. (2005). Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology, 16(3), 246–253. doi:10.1016/j.copbio.2005.03.009.

    Article  CAS  Google Scholar 

  28. Roldán, M. D., Blasco, R., Caballero, F. J., & Castillo, F. (1997). Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus. Archives of Microbiology, 169(1), 36–42. doi:10.1007/s002030050538.

    Article  Google Scholar 

  29. Song, Z.-Y., Zhou, J.-T., Wang, J., Yan, B., & Du, C.-H. (2003). Decolorization of azo dyes by Rhodobacter sphaeroides. Biotechnology Letters, 25(21), 1815–1818. doi:10.1023/A:1026244909758.

    Article  CAS  Google Scholar 

  30. Corvini, P. F. X., Meesters, R. J. W., Schäffer, A., Schröder, H. F., Vinken, R., & Hollender, J. (2004). Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Applied and Environmental Microbiology, 70(11), 6897–6900. doi:10.1128/AEM.70.11.6897-6900.2004.

    Article  CAS  Google Scholar 

  31. Crawford, R. L., & Ederer, M. M. (1999). Phylogeny of Sphingomonas species that degrade pentachlorophenol. Journal of Industrial Microbiology & Biotechnology, 23(4–5), 320–325. doi:10.1038/sj.jim.2900729.

    CAS  Google Scholar 

  32. Wilkes, H., Wittich, R., Timmis, K. N., Fortnagel, P., & Francke, W. (1996). Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Applied and Environmental Microbiology, 62(2), 367–371.

    CAS  Google Scholar 

  33. Dilbenedetto, A., Lo Noce, R. M., Narracci, M., & Aresta, M. (2006). Structure–biodegradation correlation of polyphenols for Thauera aromatica in anaerobic conditions. Chemistry and Ecology, 22(S1), S133–S143. doi:10.1080/02757540600557975.

    Article  Google Scholar 

  34. Shinoda, Y., Sakai, Y., Uenishi, H., Uchihashi, Y., Hiraishi, A., Yukawa, H., et al. (2004). Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Applied and Environmental Microbiology, 70(3), 1385–1392. doi:10.1128/AEM.70.3.1385-1392.2004.

    Article  CAS  Google Scholar 

  35. Kapley, A., Prasad, S., & Purohit, H. J. (2007). Changes in microbial diversity in fed-batch reactor operation with wastewater containing nitroaromatic residues. Bioresource Technology, 98(13), 2479–2484. doi:10.1016/j.biortech.2006.09.012.

    Article  CAS  Google Scholar 

  36. Li, G., Huang, W., Lerner, D. N., & Zhang, X. (2000). Enrichment of degrading microbes and bioremediation of petrochemical contaminants in polluted soil. Water Research, 34(15), 3845–3853. doi:10.1016/S0043-1354(00)00134-2.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Director, National Environmental Engineering Research Unit (NEERI), Nagpur, for providing the facilities for carrying out this work. Funds from CSIR for network project are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant J. Purohit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khardenavis, A.A., Kapley, A. & Purohit, H.J. Salicylic-Acid-Mediated Enhanced Biological Treatment of Wastewater. Appl Biochem Biotechnol 160, 704–718 (2010). https://doi.org/10.1007/s12010-009-8538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8538-7

Keywords

Navigation