Skip to main content

Advertisement

Log in

N2O Production by Nitrifying Biomass Under Anoxic and Aerobic Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The capacity of nitrifying biomass, grown in biofilms or in suspension, to reduce NO2 - and NO3 under anoxic conditions was tested in batch experiments. The estimated reduction rates were 5 and 25 mg N per gram volatile suspended solids (VSS) per day for nitrate and nitrite, respectively, in the case of the nitrifying biofilms. Activity tests carried out with successive feedings indicated that no acclimation of the biomass to the tested conditions occurred, as the obtained reduction rates remained almost constant. Another series of activity assays was carried out with nitrifying suspended biomass, and the reduction rates for nitrate and nitrite were 30.4 and 48.9 mg N per gram VSS per day, respectively. N2O and N2 were the final gaseous products, and their percentages depended on the source of nitrogen feed. The specific production of nitrous oxide during nitrification was investigated during continuous experiments in a biofilm airlift suspension reactor. Specific production rates up to 46 mg N2O–N per gram VSS per day were measured. The percentage of N2O produced represented up to 34.4% of the ammonia oxidized. Nitrite accumulation, low dissolved oxygen concentrations, and the presence of organic matter favored the production of nitrous oxide. N2O gas was not detected during the oxidation of nitrite even when organic matter was present. To prevent N2O gas production in nitrifying systems, the operation at low dissolved oxygen concentrations, nitrite presence, or organic matter content should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wrage, N., Velthof, G. L., van Beusichem, M. L., & Oenema, O. (2001). Soil Biology & Biochemistry, 33, 1723–1732.

    Article  CAS  Google Scholar 

  2. Hasegawa, K., Shimizu, K., & Hanaki, K. (2004). Water Science and Technology, 50(8), 145–151.

    CAS  Google Scholar 

  3. Robertson, L. A., & Kuenen, J. G. (1992). Microbial control of pollution. In J. C.Fry, et al. (Ed.), Society for general microbiology symposium, vol. 48. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  4. Florinsky, I. V., Shawna, M., & Burton, D. L. (2004). Geoderma, 119, 33–53.

    Article  CAS  Google Scholar 

  5. Kawashima, H., Bazin, M. J., & Lynch, J. M. (1996). Ecological Model, 87, 51–57.

    Article  CAS  Google Scholar 

  6. Stüven, R., & Bock, E. (2001). Water Research, 35(8), 1905–1914.

    Article  Google Scholar 

  7. Butler, M. D., Stephenson, T., Stokes, L., & Stuetz, R. M. (2005). Water Science and Technology, 52(8), 249–256.

    CAS  Google Scholar 

  8. Shaw, L. J., Nicol, G. W., Smith, Z., Fear, J., Prosser, J., & Baggs, E. M. (2006). Environmental Microbiology, 8(2), 214–222.

    Article  CAS  Google Scholar 

  9. Knowles, R. (1982). Microbiological Reviews, 46(1), 43–50.

    CAS  Google Scholar 

  10. Garrido, J. M., Moreno, J., Méndez-Pampín, R., & Lema, J. M. (1998). Water Research, 32, 2550–2552.

    Article  CAS  Google Scholar 

  11. Schulthess, R., Wild, D., & Gujer, W. (1994). Water Science Technology, 30(6), 123–132.

    CAS  Google Scholar 

  12. Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W., & Wattson, S. W. (1980). Applied and Environmental Microbiology, 40(3), 526–532.

    CAS  Google Scholar 

  13. Tortoso, A. C., & Hutchinson, G. L. (1990). Applied and Environmental Microbiology, 56(8), 1440–1448.

    Google Scholar 

  14. Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., et al. (2006). Applied and Environmental Microbiology, 72(1), 638–644.

    Article  CAS  Google Scholar 

  15. Freitag, A., Rudert, M., & Bock, E. (1987). FEMS Microbiology Letters, 48, 105–109.

    Article  CAS  Google Scholar 

  16. Remde, A., & Conrad, R. (1990). Archives of Microbiology, 154, 187–191.

    Article  CAS  Google Scholar 

  17. Bock, E., Schmidt, I., & Zart, D. (1995). Archives of Microbiology, 163, 16–20.

    Article  CAS  Google Scholar 

  18. Poth, M., & Focht, D. (1985). Applied and Environmental Microbiology, 49(5), 1134–1141.

    CAS  Google Scholar 

  19. Noda, N., Kaneko, N., Mikami, M., Kimochi, Y., Tsuneda, S., Hirata, A., et al. (2003). Water Science Technology, 48, 363–370.

    CAS  Google Scholar 

  20. Anderson, I. C., & Levine, J. S. (1986). Applied and Environmental Microbiology, 51(5), 938–945.

    CAS  Google Scholar 

  21. Gejlsbjerg, B., Frette, L., & Westermann, P. (1998). Water Research, 32(7), 2113–2121.

    Article  CAS  Google Scholar 

  22. Bock, E., Koops, H., Ahlers, B., & Harms, H. (1992). The prokaryotes: A hand-book on the biology of bacteria: Ecophysiology, isolation, identification, applications pp. 414–430. New York: Springer.

    Google Scholar 

  23. Sorensen, J. (1978). Applied and Environmental Microbiology, 35(2), 301–305.

    CAS  Google Scholar 

  24. Vishniac, W., & Santer, M. (1957). Bacteriological Reviews, 21, 199.

    Google Scholar 

  25. APHA-AWWA-WPCF (1985). Standard methods for examination of water and wastewater (16th ed.). Washington, DC, USA: American Public Health Association.

    Google Scholar 

  26. Vilas-Cruz, M., Gómez, G., Méndez, R., & Lema, J. M. (1994). Proceedings of the III International Symposium of Analytical Methodology for the Environment, vol II Ref. P1, p. 50. Barcelona, 23–24 March.

  27. Tijhuis, L., Huisman, J. L., Hekkelman, H. D., van Loosdrecht, M. C. M., & Heijnen, J. J. (1995). Biotechnology and Bioengineering, 47, 585–595.

    Article  CAS  Google Scholar 

  28. Braida, W., & Ong, S. K. (2000). Water, Air and Soil Pollution, 118(1–2), 13–26.

    Article  CAS  Google Scholar 

  29. Abeliovich, A., & Vonshak, A. (1992). Archives of Microbiology, 158, 267–270.

    Article  CAS  Google Scholar 

  30. Poth, M. (1986). Applied and Environmental Microbiology, 52(4), 957–959.

    CAS  Google Scholar 

  31. Zheng, H., Hanaki, K., & Matsuo, T. (1994). Water Science and Technology, 30(6), 133–141.

    CAS  Google Scholar 

  32. Garrido, J. M., Campos, J. L., Méndez, R., & Lema, J. M. (1997). Water Science and Technology, 36(1), 157–163.

    Article  CAS  Google Scholar 

  33. Osada, T., Kuroda, K., & Yonaga, M. (1995). Water Research, 29(6), 1607–1608.

    Article  CAS  Google Scholar 

  34. Blackmer, A. M., Bremnert, J. M., & Schmidt, E. L. (1980). Applied and Environmental Microbiology, 40(6), 1060–1066.

    CAS  Google Scholar 

  35. Kester, R. A., de Boer, W., & Laanbroek, H. J. (1997). Applied and Environmental Microbiology, 63(10), 3872–3877.

    CAS  Google Scholar 

  36. Hwang, S., Jang, K., Jang, H., Song, J., & Bae, W. (2006). Biodegradation, 17, 19–29.

    Article  CAS  Google Scholar 

  37. Hynes, R. K., & Knowles, R. (1984). Canadian Journal of Microbiology, 30, 1397–1404.

    Article  CAS  Google Scholar 

  38. Stüven, R., Vollmer, M., & Bock, E. (1992). Archives of Microbiology, 158, 439–443.

    Article  Google Scholar 

  39. Kampschreur, M. J., van der Star, W. R. L., Wielders, H. A., Mulder, J. W., Jetten, S. M., & Loosdrecht, M. C. M. (2007). Water Research, 42, 812–826.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Spanish CICYT through the BIOGRAMEM project (CTQ2005-04935/PPQ) and the Xunta de Galicia (Spain) through the GRAFAN project (PGIDIT04TAM265008PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Campos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, J.L., Arrojo, B., Vázquez-Padín, J.R. et al. N2O Production by Nitrifying Biomass Under Anoxic and Aerobic Conditions. Appl Biochem Biotechnol 152, 189–198 (2009). https://doi.org/10.1007/s12010-008-8215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8215-2

Keywords

Navigation