Skip to main content
Log in

Production of Cellulolytic Enzymes by Aspergillus phoenicis in Grape Waste using Response Surface Methodology

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of cellulolytic enzymes by the fungus Aspergillus phoenicis was investigated. Grape waste from the winemaking industry was chosen as the growth substrate among several agro-industrial byproducts. A 2 × 2 central composite design was performed, utilizing the amount of grape waste and peptone as independent variables. The fungus was cultivated in submerged fermentation at 30 °C and 120 rpm for 120 h, and the activities of total cellulases, endoglucanases, and β-glucosidases were measured. Total cellulases were positively influenced by the linear increase of peptone concentration and decrease at axial concentrations of grape waste and peptone. Maximum activity of endoglucanase was observed by a linear increase of both grape waste and peptone concentrations. Concentrations of grape waste between 5 and 15 g/L had a positive effect on the production of β-glucosidase; peptone had no significant effects. The optimum production of the three cellulolytic activities was observed at values near the central point. A. phoenicis has the potential for the production of cellulases utilizing grape waste as the growth substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2002). Current Opinion in Biotechnology, 13, 364–351.

    Article  Google Scholar 

  2. Lynd, L. R., Weiner, P. J., Zyl, W. H., & Pretoriuos, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  3. Mitidieri, S., Martinelli, A. H. M., Schrank, A., & Vainstein, M. H. V. (2006). Bioresource Technology, 97, 1217–1224.

    Article  CAS  Google Scholar 

  4. Farag, A. M., & Hassan, M. A. (2004). Enzyme and Microbial Technology, 34, 85–93.

    Article  CAS  Google Scholar 

  5. Ng, T. B. (2004). Peptides, 25, 1055–1073.

    Article  CAS  Google Scholar 

  6. Bissett, F., & Sternberg, D. (1978). Applied and Environmental Microbiology, 35, 750–755.

    CAS  Google Scholar 

  7. Duff, S. J. B., Cooper, D. G., & Fuller, O. M. (1986). Enzyme and Microbial Technology, 8, 305–308.

    Article  CAS  Google Scholar 

  8. Wen, Z., Liao, W., & Chen, S. (2005). Bioresource Technology, 96, 491–499.

    Article  CAS  Google Scholar 

  9. Bayer, E. A., Lamed, R., & Himmel, M. E. (2007). Current Opinion in Biotechnology, 18, 237–245.

    Article  CAS  Google Scholar 

  10. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  11. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  12. Arvanitoyannis, I. S., Ladas, D., & Mavronatis, A. (2006). International Journal of Food Science & Technology, 41, 1117–1151.

    Article  CAS  Google Scholar 

  13. Anbu, P., Gopinath, S. C. B., Hilda, A., Lakshmipriya, T., & Annadurai, G. (2007). Bioresource Technology, 98, 1298–1303.

    Article  CAS  Google Scholar 

  14. Francis, F., Sabu, A., Madhaven, N., Ramachandran, S., Ghsoh, S., Szakacs, G., et al. (2003). Biochemical Engineering Journal, 20, 107–115.

    Google Scholar 

  15. Cladera-Olivera, F., Caron, G. R., & Brandelli, A. (2004). Biochemical Engineering Journal, 21, 53–58.

    Article  CAS  Google Scholar 

  16. Silveira, S. T., Daroit, D. J., & Brandelli, A. (2008). LWT - Food Science Technology, 41, 170–174.

    Article  CAS  Google Scholar 

  17. AOAC (1995). Official methods of analysis (15th ed.). Washington, DC: Association of Official Analytical Chemists.

    Google Scholar 

  18. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  19. Haaland, P. D. (1989). Experimental design in biotechnology. New York: Mercel Dekker.

    Google Scholar 

  20. Daroit, D. J., Silveira, S. T., Hertz, P. F., & Brandelli, A. (2007). Process Biochemistry, 42, 904–908.

    Article  CAS  Google Scholar 

  21. Botella, C., Ory, I., Webb, C., Cantero, D., & Blandino, A. (2005). Biochemical Engineering Journal, 26, 100–106.

    Article  CAS  Google Scholar 

  22. Wilkins, M. R., Widmer, W. W., Grohmann, K., & Cameron, R. G. (2007). Bioresource Technology, 98, 1596–1601.

    Article  CAS  Google Scholar 

  23. Stewart, J. C., & Parry, J. C. (1981). Journal of General Microbiology, 125, 33–39.

    CAS  Google Scholar 

  24. Hanif, A., Yasmeen, A., & Rajoka, M. I. (2004). Bioresource Technology, 94, 311–319.

    Article  CAS  Google Scholar 

  25. Elisashvili, V., Penninckx, M., Kachlishvili, E., Asatiani, M., & Kvesitadze, G. (2006). Enzyme and Microbial Technology, 38, 998–1004.

    Article  CAS  Google Scholar 

  26. Hang, Y. D., & Woodams, E. E. (1994). LWT - Food Science Technology, 27, 587–589.

    CAS  Google Scholar 

  27. Yamane, Y. I., Fujita, J., Fukuchi, K., Shimizu, R. I., Hiyoshi, A., Fukida, H., et al. (2002). Journal of Bioscience and Bioengineering, 93, 479–484.

    CAS  Google Scholar 

  28. Thygesen, A., Thomsen, A. B., Schmidt, A. S., Jørgensen, H., Ahring, B. K., & Olsson, L. (2003). Enzyme and Microbial Technology, 32, 606–615.

    Article  CAS  Google Scholar 

  29. Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., & Viikari, L. (2005). Process Biochemistry, 40, 3519–3525.

    Article  Google Scholar 

  30. Wen, Z., Liao, W., & Chen, S. (2005). Process Biochemistry, 40, 3087–3094.

    Article  CAS  Google Scholar 

  31. Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Industrial Crops and Products, 18, 37–45.

    Article  CAS  Google Scholar 

  32. Olsson, L., Christnsen, T. M. I. E., Hansen, K. P., & Palmqvist, E. A. (2003). Enzyme and Microbial Technology, 33, 612–619.

    Article  CAS  Google Scholar 

  33. Hölker, U., & Lenz, J. (2005). Current Opinion in Biotechnology, 8, 301–306.

    Google Scholar 

Download references

Acknowledgement

This work was supported by CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dedavid e Silva, L.A., Cortez Lopes, F., Terra Silveira, S. et al. Production of Cellulolytic Enzymes by Aspergillus phoenicis in Grape Waste using Response Surface Methodology. Appl Biochem Biotechnol 152, 295–305 (2009). https://doi.org/10.1007/s12010-008-8190-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8190-7

Keywords

Navigation