Skip to main content
Log in

Enzyme production by industrially relevant fungi cultured on coproduct from corn dry grind ethanol plants

  • Session 1A: Enzyme Catalysis And Engineering
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Distillers dried grain with solubles (DDGS) is the major coproduct produced at a dry grind ethanol facility. Currently, it is sold primarily as a ruminant animal feed. DDGS is low cost and relatively high in protein and fiber contents. In this study, DDGS was investigated as carbon source for extracellular hydrolytic enzyme production. Two filamentous fungi, noted for their high cellulolytic and hemicellulolytic enzyme titers, were grown on DDGS: Trichoderma reesei Rut C-30 and Asper gillus niger NRRL 2001. DDGS was either used as delivered from the plant (untreated) or after being pretreated with hot water. Both microorganisms secreted a broad range of enzymes when grown on DDGS. Higher xylanase titers were obtained when cultured on hot water DDGS compared with growth on untreated DDGS. Maximum xylanase titers were produced in 4 d for A. niger and 8 d for T. reesei in shake flask cultures. Larger amounts of enzymes were produced in bioreactors (5 L) either equipped with Rushton (for T. reesei) or updraft marine impellers (A. niger). Initial production titers were lower for bioreactor than for flask cultures, especially for T. reesei cultures. Improvement of enzyme titers were obtained using fed-batch feeding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belyea, R. L., Rausch, K. D., and Tumbleson, M. E. (2004), Biores. Technol. 94, 293–298.

    Article  CAS  Google Scholar 

  2. Dien, B. S., Iten, L. B., and Bothast, R. J. (1999), J. Ind. Microbiol. Biotechnol. 22, 575–581.

    Article  CAS  Google Scholar 

  3. Wong, K. K. Y, Tan, L. U. L., and Saddler, J. N. (1988), Microbiol. Rev. 52, 305–317.

    CAS  Google Scholar 

  4. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., and Kim, S. W. (2004), Biores. Technol. 91, 153–156.

    Article  CAS  Google Scholar 

  5. de Vries, R. (2003), Appl. Microbiol. Biotechnol. 61, 10–20.

    Google Scholar 

  6. Schuster, E., Dunn-Coleman, N., Frisvad, J. C., and van Dijck, P. W. M. (2002), Appl. Microbiol. Biotechnol. 59, 426–435.

    Article  CAS  Google Scholar 

  7. Mosier, N. S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., and Ladisch, M. R. (2005), Biores. Technol. 96(18), 1986–1993.

    Article  CAS  Google Scholar 

  8. Mosier, N. S., Hendrickson, R., Brewer, M., et al. (2005), Appl. Biochem. Biotechnol. 125, 1–21.

    Article  Google Scholar 

  9. Mandels, M., Andreotti, R., and Roche, C. (1976), Biotechnol. Bioeng. 6, 17–34.

    Google Scholar 

  10. Miller, G. L. (1959), Anal. Chem. 31, 426–428.

    Article  CAS  Google Scholar 

  11. Li, X. -L., Dien, B. S., Cotta, M. A., Wu, Y. V., and Saha B. C. (2005), Appl. Biochem. Biotechnol. 121–124, 321–334.

    Article  Google Scholar 

  12. Oliveira, L. A., Porto, A. L. F., and Tambourgi, E. B. (2006), Biores. Technol. 97, 862–867.

    Article  CAS  Google Scholar 

  13. Jiang, Z. Q., Yang, S. Q., Yan, Q. J., Li, L. T., and Tan, S. S. (2005), World J. Microbiol. Biotechnol. 21, 863–867.

    Article  CAS  Google Scholar 

  14. Brown, J. A., Cossllin, S. A., and Wood, T. M. (1987), Enzyme Microb. Technol. 9, 355–360.

    Article  CAS  Google Scholar 

  15. Smith, D. C., and Wood, T. M. (1991), Biotechnol. Bioeng. 38, 883–890.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Ximenes.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ximenes, E.A., Dien, B.S., Ladisch, M.R. et al. Enzyme production by industrially relevant fungi cultured on coproduct from corn dry grind ethanol plants. Appl Biochem Biotechnol 137, 171–183 (2007). https://doi.org/10.1007/s12010-007-9049-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-9049-z

Index Entries

Navigation