Skip to main content
Log in

Screening and Immobilization Burkholderia sp. GXU56 Lipase for Enantioselective Resolution of (R,S)-Methyl Mandelate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Microorganisms producing lipase were isolated from soil and sewage samples and screened for enantioselective resolution of (R,S)-methyl mandelate to (R)-mandelic acid. A strain designated as GXU56 was obtained and identified as Burkholderia sp. Preparing immobilized GXU56 lipase by simple adsorption on octyl sepharose CL-4B, the optimum temperature was shifted from 40 °C (free lipase) to 50 °C (immobilized lipase), and the optimum pH was shifted from 8.0 (free lipase) to 7.2 (immobilized lipase). The immobilized enzyme displayed excellent stability in the pH range of 5.0–8.0, at the temperatures below 50 °C and in organic solvents compared with free enzyme. Enantioselectivity ratio for (R)-mandelic acid (E) was dramatically improved from 29.2 to more than 300 by applying immobilized lipase in the resolution of (R,S)-methyl mandelate. After five cycles of use of immobilized lipase, conversion and enantiomeric excess of (R)-mandelic acid were 34.5% and 98.5%, respectively, with enantioselectivity ratio for (R)-mandelic acid (E) of 230. Thus, octyl-sepharose-immobilized GXU56 lipase can be used as a bio-resolution reagent for producing (R)-mandelic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kazushi, K., Kenichi, S., Yukihiko, H., Hiroyuki, N., & Kazuhiko, S. (1996). Design of resolving reagents: p-Substituted Mandelic Acid as Resolving Reagents for 1-Arylalkylamines. Tetrahedron: Asymmetry,7,1539–1542.

    Article  Google Scholar 

  2. Savidge, T.A. (1984). Enzymatic conversions used in the production of penicillins and cephalosporins. pp: 177−224. In: Biotechnology of Industrial Antibiotics, Vandamme, Erick. J. (ed.), Marcel Dekker, New York.

  3. Mills, J., Schmiegal, K. K., & Sham, W. N. (1983). Phenethanolamines compositions containing the sane, and method for effecting weight control. US Patent 4,391,826. US Patent, 4, 391,826.

    Google Scholar 

  4. Arai, T., Koike, H., Hirata, K., & Oizumi, H. (1988). Separation of pyridone carboxylic acid enantiomers by high-performance liquid chromatography using copper(ІІ)-L-amino acid as the eluent. Journal of Chromatography, 448, 439–444.

    Article  CAS  Google Scholar 

  5. Daniela, S., Juan, A. C., Anna, M. G., Silvia, C., Remo, B., Cristina, P., & Manuel, V. (2002). Liquid membranes for chiral separations. Application of cinchonidine as a chiral carrier. Journal of Separation Science, 25, 229–238.

    Article  Google Scholar 

  6. Byung-Yong, K., Ki-Chul, H., Hee-Sang, S., Namhyun, C., & Won-Gi, B. (2000). Optical resolution of (R,S)-(±)-mandelic acid by Pseudomonas sp. . Biotechnology Letters, 22, 1871–1875.

    Article  Google Scholar 

  7. Ganapati, D. Y., & Sivakumar, P. (2004). Enzyme-catalysed optical resolution of mandelic acid via (R,S)-(±)-methyl mandelate in non–aqueous media. Biochemical Engineering Journal, 19, 101–107.

    Article  Google Scholar 

  8. Praveen, K., Anirban, B., Mayilraj, S., & Uttam, C. B. (2004). Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(-)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry, 15, 207–211.

    Article  Google Scholar 

  9. Cristiane, P., & Maria, G. N. (2006). Effects of organic solvents and ionic liquids on the aminolysis of (R,S)-methyl mandelate catalyzed by lipases. Tetrahedron: Asymmetry, 17, 428–433.

    Article  Google Scholar 

  10. Neide, Q., & Maria, D. G. N. (2002). Pseudomonas sp. lipase immobilized in polymers versus the use of free enzyme in the resolution of (R,S)-methyl mandelate. Tetrahedron Letters, 43, 5225–5227.

    Article  Google Scholar 

  11. Rohit, S., Yusuf, C., & Uttam, C. B. (2001). Production, purification, characterization, and applications of lipases. Biotechnol Advances, 19, 627–662.

    Article  Google Scholar 

  12. Fernandez-Lorente, G., Fernández-Lafuente, R., Palomo, J. M., Mateo, C., Bastida, A., Coca, J., et al. (2001). Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. Journal of Molecular Catalysis B, Enzymatic, 11, 649–656.

    Article  CAS  Google Scholar 

  13. Chaubey, A., Parshad, R., Koul, S., Taneja, S. C., & Qazi, G. N. (2006). Arthrobacter sp. lipase immobilization for improvement in stability and enantioselevtivity. Applied Microbiology and Biotechnology, 73, 598–606.

    Article  CAS  Google Scholar 

  14. Dong-Woo, L., You-Seok, K., Ki-Jun, K., Byung-Chan, K., Hak-Jong, C., Doo-Sik, K., et al. (1999). Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiology Letters, 179, 393–400.

    Article  Google Scholar 

  15. Mohammad, H., Kathryn, M. U. B., Szilvia, M. Z., Naoki, M., Yoshinobu, N., Isao, Y., et al. (2004). Isolation, Identification, and Characterization of a Novel, Oil-Degrading Bacterium, Pseudomonas aeruginosa T1. Current Microbiolgy, 49, 108–114.

    Google Scholar 

  16. Jiangke, Y., Daoyi, G., & Yunjun, Y. (2007). Cloning, expression and characterization of a novel thermal stable and short-chain alcohol tolerant lipase from Burkholderia cepacia G63. Journal of Molecular Catalysis B, Enzymatic, 45, 91–96.

    Article  Google Scholar 

  17. Ryo, I., Manabu, S., & Fusako, K. (2001). Screening and characterization of trehalose-oleate hydrolyzing lipase. FEMS Microbiology Letters, 195, 231–235.

    Article  Google Scholar 

  18. Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima-Filho, J. L. (2005). Characterization of Mucor miehei lipase immobilized on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology and Biotechnology, 21, 189–192.

    Article  CAS  Google Scholar 

  19. Jose, M. P., Gloria, F. L., Cesar, M., Claudia, O., Roberto, F. L., & Jose, M. G. (2002). Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme and Microbial Technology, 31, 775–783.

    Article  Google Scholar 

  20. Roberto, F. L., Pilar, A., Pilar, S., Gloria, F. L., & José, M. G. (1998). Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 93, 185–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, HN., Wu, B. Screening and Immobilization Burkholderia sp. GXU56 Lipase for Enantioselective Resolution of (R,S)-Methyl Mandelate. Appl Biochem Biotechnol 149, 79–88 (2008). https://doi.org/10.1007/s12010-007-8125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8125-8

Keywords

Navigation