Skip to main content

Advertisement

Log in

Arthrobacter sp. lipase immobilization for improvement in stability and enantioselectivity

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Arthrobacter sp. lipase (ABL, MTCC no. 5125) is being recognized as an efficient enzyme for the resolution of drugs and their intermediates. The immobilization of ABL on various matrices for its enantioselectivity, stability, and reusability has been studied. Immobilization by covalent bonding on sepharose and silica afforded a maximum of 380 and 40 IU/g activity, respectively, whereas sol–gel entrapment provided a maximum of 150 IU/g activity in dry powder. The immobilized enzyme displayed excellent stability in the pH range of 4–10 and even at higher temperature, i.e., 50–60°C, compared to free enzyme, which is unstable under extreme conditions. The resolution of racemic auxiliaries like 1-phenyl ethanol and an intermediate of antidepressant drug fluoxetine, i.e., ethyl 3-hydroxy-3-phenylpropanoate alkyl acylates, provided exclusively R-(+) products (∼99% ee, E=646 and 473), compared to cell free extract/whole cells which gave a product with ∼96% ee (E=106 and 150). The repeated use (ten times) of covalently immobilized and entrapped ABL resulted in no loss in activity, thus demonstrating its prospects for commercial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Anand NA, Kapoor M, Taneja SC, Koul S, Parshad R, Manhas KS, Sharma RL and Qazi GN (2005) Steroselective enzymatic process for the preparation of optically pure (+)-cis-(3r,4s)-3 acetoxy-1-(4-methoxy phenyl)-4 phenylazetidin-2-one as precursor of taxol side chain. Indian patent application NF.0266/NF/2005

  • Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol–gel materials. Chem Mater 6:1605–1614

    Article  CAS  Google Scholar 

  • Axen R, Porath J, Ernback S (1967a) Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature 214:1302–1304

    Article  CAS  Google Scholar 

  • Axen R, Porath J, Ernback S (1967b) Chemical coupling of proteins to agarose. Nature 215:1420–1491

    Article  Google Scholar 

  • Bai ZW, Zhou YK (2004) A novel enzyme support derived from aminated silica gel and polysuccinimide: preparation and application for immobilization of porcine pancreatic lipase. React Funct Polym 59:93–98

    Article  CAS  Google Scholar 

  • Berglund P (2001) Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 18:13–22

    Article  CAS  Google Scholar 

  • Boland W, Frobl C, Lorenz M (1991) Esterolytic and lipolytic enzymes in organic synthesis. Synthesis 12:1049–1072

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bright FV (1998) Spectroscopic characterization of immobilized proteins and immobilized biomolecules. In: Cass T, Ligler FS (eds) Analysis: a practical approach (chapter 10). Oxford University Press, Oxford

    Google Scholar 

  • Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkemburg JP, Bjorkling F, Huge-Jensen B, Patkar SS, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494

    Article  CAS  Google Scholar 

  • Chen JP, Wang HY (1998) Improved properties of bilirubin oxidase by entrapment in alginate–silicate sol–gel matrix. Biotechnol Tech 12:851–853

    Article  CAS  Google Scholar 

  • Coffen DL (1997) Enzyme catalysed reactions. In: Ahuja S (ed) Chiral separations: applications and technology. American Chemical Society, Washington DC, pp 59–91

    Google Scholar 

  • Davies HG, Green RH, Kelly DR, Roberts SM (1989) Biotransformations in preparative organic chemistry: the use of isolated enzymes and whole cell systems in synthesis. Academic, London

    Google Scholar 

  • Davranov K (1994) Microbial lipases in biotechnology. Appl Biochem Microbiol 30:527–534

    CAS  Google Scholar 

  • Faber K (1992) Biotransformations in organic chemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fernandez-Lorente G, Terreni M, Mateo C, Bastida A, Fernandez-Lafuente R, Dalmases P (2001) Modulation of lipase properties in macroaqueous system by controlled enzyme immobilization: enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme Microb Technol 28:389–396

    Article  CAS  Google Scholar 

  • Guilbault GG (1982) Immobilized enzymes as analytical reagents. Appl Biochem Biotechnol 7:85–93

    CAS  Google Scholar 

  • Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  CAS  Google Scholar 

  • He F, Zhuo RX, Liu LJ, Jin DB, Feng J, Wang XL (2001) Immobilized lipase on porous silica beads: preparation and application for enzymatic ring-opening polymerization of cyclic phosphate. React Funct Polym 47:153–158

    Article  CAS  Google Scholar 

  • Hoffman CH, Harris E, Chodroff S, Michelson S, Rothrck JW, Peterson E, Reuter W (1970) Polunucleotide phosphorylase covalently bound to cellulose and its use in the preparation of homopolynucleotodes. Biochem Biophys Res Commun 41:710

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  Google Scholar 

  • Johri S, Verma V, Parshad R, Koul S, Taneja SC, Qazi GN (2001) Purification and characterization of an ester hydrolase from a strain of Arthrobacter sp.: its application in asymmetrisation of 2-bezyl-1,3-propanediol acylates. Bioorg Med Chem 9:269–273

    Article  CAS  Google Scholar 

  • Jones JB (1986) Enzymes in organic sysntheis. Tetrahedron 42:3351–3403

    Article  CAS  Google Scholar 

  • Kazlauskas RJ, Bornscheuer UT (1998) Biotransformations with lipases. In: Rehm HJ, Reed G, Puhler A, Stadler PJW, Kelly DR (eds) Biotechnology, vol 8. VCH, pp 37–191

  • Kieslich K (1993) How to select a useful biocatalyst. Chimia 47:99–102

    CAS  Google Scholar 

  • Kotha A, Raman RC, Ponratham S, Kumar KK, Shewale JG (1996) Beaded reactive polymers, 2. Immobilization of penicillin G acylase on glycidyl methacrylate–divinyl benzene copolymers of differing pore size and its distribution. React Funct Polym 28:235–242

    Article  CAS  Google Scholar 

  • Koul S, Taneja SC, Parshad R, Qazi GN (1998) Enantioselective hydrolysis of alkyl ester of substituted 1-phenyl ethanols using newly isolated strain of Arthrobacter sp; a comparative study with known commercial lipase. Tetrahedron Asymmetry 9:3395–3399

    Article  CAS  Google Scholar 

  • Labourdenne S, Cagna A, Delorme B, Esposito G, Verger R, Riviere C (1997) Oil-drop tensiometer: applications for studying the kinetics of lipase action. Methods Enzymol 286:306–326

    CAS  Google Scholar 

  • Li J, Tan SN, Oh JT (1998) Silica sol–gel immobilized amperometric enzyme electrode for peroxide determination in the organic phase. J Electroanal Chem 448:69–77

    Article  CAS  Google Scholar 

  • Malcata FX, Reyes HR, Garcia HS, Hill CG, Amundson CH (1990) Immobilized lipase reactors for modification of fats and oils, a review. J Am Oil Chem Soc 67:890–910

    CAS  Google Scholar 

  • Palomo JM, Fernandez-Lorente G, Mateo C, Fuentes M, Fernandez-Lorente G, Guisan JM (2002) Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering. Kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron Asymmetry 13:1337–1345

    Article  CAS  Google Scholar 

  • Qazi GN, Parshad R, Koul S, Taneja SC, Dhar KL, Handa SS (1999) Indian patent, NF/1/98

  • Ransac S, Ivanova M, Verger R, Panaiotov I (1997) Monolayer techniques for studying lipase kinetics. Methods Enzymol 286:263–292

    Article  CAS  Google Scholar 

  • Reetz MT (1997) Entrapment of biocatalysts in hydrophobic sol–gel materials for use in organic chemistry. Adv Mater (Weinh) 9:943–954

    Article  CAS  Google Scholar 

  • Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol–gel materials. Biotechnol Bioeng 49:527–534

    Article  CAS  Google Scholar 

  • Reetz MT, Tielmann P, Wiesenhofer W, Konen W, Zonta A (2003) Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728

    Article  CAS  Google Scholar 

  • Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl 37:1608–1633

    Article  Google Scholar 

  • Schneider MP (ed) (1986) Enzymes as catalysts in organic synthesis. (NATO) ASI Ser., Ser C., vol 178, Reidel Dordrecht

  • Takagi Y, Teramoto J, Kihara H, Itoh T, Tsukube H (1996) Thiacrown ether as regulator of lipase-catalysed trans-esterification in organic media-practical optical resolution of allyl alcohols. Tetrahedron Lett 37:4991–4992

    Article  CAS  Google Scholar 

  • Theil F (1995) Lipase supported synthesis of biologically active compounds. Chem Rev 95:2203–2227

    Article  CAS  Google Scholar 

  • Trevan MD (1980) Immobilized enzymes: an introduction and applications in biotechnology. Wiley, New York

    Google Scholar 

  • Weetall HH (1974) Immobilized enzymes: analytical applications. Anal Chem 46:602A–615A

    Article  CAS  Google Scholar 

  • Wei Y, Xu J, Dong JH, Qiu KY, Jansen SA (1999) Preparation and physisorption characterization of d-glucose-templated mesoporous silica sol–gel materials. Chem Mater 11:2023–2029

    Article  CAS  Google Scholar 

  • Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon, Oxford

    Google Scholar 

  • Wu YX, Jaaskelainen S, Linko YY (1996) An investigation of crude lipase for hydrolysis, esterification and transesterification. Enzyme Microb Technol 19:226–231

    Article  CAS  Google Scholar 

  • Yadav GD, Trivedi AH (2003) Kinetic modelling of immobilized lipase catalysed transesterification of n-octanol with vinyl acetate in nonaqueous media. Enzyme Microb Technol 32:783–789

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Parshad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaubey, A., Parshad, R., Koul, S. et al. Arthrobacter sp. lipase immobilization for improvement in stability and enantioselectivity. Appl Microbiol Biotechnol 73, 598–606 (2006). https://doi.org/10.1007/s00253-006-0520-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0520-5

Keywords

Navigation