Skip to main content
Log in

Oxidation in Acidic Medium of Lignins from Agricultural Residues

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol–water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol−1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  1. Lobo, P. C., Jaguaribe, E. F., Rodrigues, J., & da Rocha, F. A. A. (2007). Applied Thermal Engineering, 27, 1405–1413.

    Article  Google Scholar 

  2. Ripoli, T. C. C., Molina Jr, W. F., & Ripoli, M. L. C. (2000). Science in Agriculture, 4(57), 677–681.

    Google Scholar 

  3. Fengel, D., & e Wegener, G. (1989). In Wood: Chemistry, ultra structure, reactions (pp. 132–181). Berlin: Walter de Gruyter.

  4. Nimz, H. H. (1974). Angewandte Chemie International edition in English, 13, 313.

    Article  Google Scholar 

  5. Costa, S. M. (2005). DR thesis, Departamento de Biotecnologia/FAENQUIL, Lorena, Brazil.

  6. Gonçalves, A. R., & Luz, S. M. (2000). In Catalizadores y Adsorventes Iberoamericanos para la Remoción de Metales Pesados de Efluentes Industriales. P. Á. Garcia (Ed.), Ediciones Cyted (pp. 159–168). Madrid

  7. Gonçalves, A. R., Luz, S. M. (2001a). Poster presentations, proceedings, Guaratinguetá, pp. 345–342, Brazil.

  8. Gonçalves, A. R., Luz, S. M. (2001b). Poster presentations, proceedings, Guaratinguetá, pp. 266–269, Brazil.

  9. Ghoshroy, S., Freedman, K., Lartey, R., & Citovsky, V. (1998). Plant Journal, 13, 591–602.

    Article  CAS  Google Scholar 

  10. Dönmez, G., & Aksu, Z. (1999). Proceedings in Biochemistry, 3, 135–142.

    Article  Google Scholar 

  11. Schickler, H., & Caspi, H. (1999). Physiologia Plantarum, 105(1), 39–44.

    Article  CAS  Google Scholar 

  12. Chaoui, A., Mazhoud, S., Ghorgbal, M. H., & El Ferjani, E. (1997). Plant Science, 121(2), 139–147.

    Article  Google Scholar 

  13. Jordão, C. P., Da Silva, A. C., Pereira, J. L., & Brune, W. (1999). Química Nova, 22, 47–52.

    Article  Google Scholar 

  14. Kefala, M. I., Zouboulis, A. I., & Matis, K. A. (1999). Environmental Pollution, 94, 283–293.

    Article  Google Scholar 

  15. Partenheimer, W. (1991). Journal of Molecular Catalysis, 67, 35–46.

    Article  CAS  Google Scholar 

  16. Sheldon, R. A., & Kochi, J. K. (1981). pp. 121–133, 315–328. New York: Academic.

  17. Levenspiel, O. (2000). In Engenharia das Reações Químicas. São Paulo: Edgard Blücher, pp. 21–22.

  18. Ruzene, D. S. (2005). DR thesis, EEL/USP, Lorena, Brazil.

  19. Moriya, R. Y., Gonçalves, A. R., & Duarte, M. C. T. (2006). 28th Symposium on Biotechnology for Fuels and Chemicals, EUA.

  20. Curvelo, A. A. S., & Pereira, R. (1995). 8, Helsinki 1995. Proceedings. V.2, pp. 473–478.

  21. Faix, O. (1992). S. Y. Lin and C. W. Dence (eds.), Springer, Berlin, pp. 83–109.

  22. Scarminio, I. S., & Bruns, R. E. (1989). Trends in Analytical Chemistry, 8, 326–327.

    Article  Google Scholar 

  23. Benar, P., Mandelli, D., Ferreira, M. M. C., Schuchardt, U., & Gonçalves, A. R. (1999). Journal of Wood Chemistry and Technology, 19, 155–165.

    Article  Google Scholar 

  24. Gonçalves, A. R., & Ventura, T. R. (2003). Proceedings. VII Encontro de Iniciação Científica, São José dos Campos, SP, Brazil.

Download references

Acknowledgment

The authors acknowledge financial support from FAPESP, CNPq, and Lignocarb–ALFA Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adilson Roberto Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labat, G.A.A., Gonçalves, A.R. Oxidation in Acidic Medium of Lignins from Agricultural Residues. Appl Biochem Biotechnol 148, 151–161 (2008). https://doi.org/10.1007/s12010-007-8120-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8120-0

Keywords

Navigation