Skip to main content
Log in

Effect of Chain Length on Enzymatic Hydrolysis of p-Nitrophenyl Esters in Supercritical Carbon Dioxide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of chain length on the enzymatic hydrolysis of various p-nitrophenyl esters was investigated. Specifically, the hydrolysis of various esters p-nitrophenyl butyrate (PNPB), p-nitrophenyl caprylate (PNPC), p-nitrophenyl laurate (PNPL), p-nitrophenyl myristate (PNPM) and p-nitrophenyl palmitate (PNPP) was studied in supercritical carbon dioxide (ScCO2) with lipase (Novozym 435). This indicates that the conversion of nitrophenyl esters decreases with increasing chain length. The effect of various parameters such as amount of water added, temperature, and enzyme loading was studied. The optimum temperature for the hydrolysis of PNPB and PNPC was 50°C but was 55°C for PNPL, PNPM, and PNPP in ScCO2. The reactions were also conducted in acetonitrile as the solvent, and it was found that the reactions reach equilibrium much faster in ScCO2 than in acetonitrile. The kinetics of the hydrolysis reactions were modeled using a Ping Pong Bi Bi model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nini, L., Sarda, L., Comeau, L. C., Boitard, E., Dubes, J. P., & Chahinian, H. (2001). Biochimica et Biophysica Acta, 1534, 34–44.

    CAS  Google Scholar 

  2. Vaysse, L., Aboubakry, L., Moulin, G., & Dubreucq, E. (2002). Enzyme and Microbial Technology, 31, 648–655.

    Article  CAS  Google Scholar 

  3. Pencreach, G., & Baratti, J. C. (1996). Enzyme and Microbial Technology, 18, 417–422.

    Article  CAS  Google Scholar 

  4. Yadav, G. D., & Manjula Devi, K. (2004). Biochemical Engineering Journal, 17, 57–63.

    Article  CAS  Google Scholar 

  5. Burdette, R. A., & Quinn, D. M. (1986). Journal of Biological Chemistry, 261, 12016–12021.

    CAS  Google Scholar 

  6. Charton, E., & Macrae, A. R. (1993). Enzyme and Microbial Technology, 15, 489–493.

    Article  CAS  Google Scholar 

  7. Hui, Y., Wang, S., & Jiang, X. (1982). Journal of the American Chemical Society, 104, 347–349.

    Article  CAS  Google Scholar 

  8. Gupta, M. N. (1992). European Journal of Biochemistry, 203, 25–32.

    Article  CAS  Google Scholar 

  9. Harikrishna, S., Manohar, B., Divakar, S., Prapulla, S. G., & Karanth, N. G. (2000). Enzyme and Microbial Technology, 26, 131–136.

    Article  CAS  Google Scholar 

  10. Chulalaksananukul, W., Condoret, J. S., & Combes, D. (1992). Enzyme and Microbial Technology, 14, 293–298.

    Article  CAS  Google Scholar 

  11. Klibanov, A. M. (1989). Trends in Biochemical Sciences, 14, 141–144.

    Article  CAS  Google Scholar 

  12. Turner, C., Persson, M., Mathiasson, L., Adlercreutz, P., & King, J. W. (2001). Enzyme and Microbial Technology, 29, 111–121.

    Article  CAS  Google Scholar 

  13. Sovova, H., & Ucka, M. Z. (2003). Chemical Engineering Science, 58, 2339–2350.

    Article  CAS  Google Scholar 

  14. Nagesha, G. K., Manohar, B., & Udaya Sankar, K. (2004). Journal of Supercritical Fluids, 32, 137–145.

    Article  CAS  Google Scholar 

  15. Srivastava, S., & Madras, G. (2001). Journal of Chemical Technology and Biotechnology, 76, 890–892.

    Article  CAS  Google Scholar 

  16. Matsuda, T., Harada, T., Nakamura, K., & Ikariya, T. (2005). Tetrahedron: Asymmetry, 16, 909–915.

    Article  CAS  Google Scholar 

  17. Kumar, R., Modak, J., & Madras, G. (2005). Industrial & Engineering Chemistry Research, 43, 1568–1573.

    Article  CAS  Google Scholar 

  18. Nakamura, K., Chi, Y. M., Yamada, Y., & Yano, T. (1985). Chemical Engineering Communications, 45, 207–212.

    Article  Google Scholar 

  19. Srivastava, S., Modak, J., & Madras, G. (2002). Industrial & Engineering Chemistry Research, 41, 1940–1945.

    Article  CAS  Google Scholar 

  20. Karel, B. E., & Klibanov, A. M. (1989). Biotechnology and Bioengineering, 34, 1178–1185.

    Article  Google Scholar 

  21. Parvaresh, F., Robert, H., Thomas, D., & Legoy, M. D. (1992). Biotechnology and Bioengineering, 39, 467–473.

    Article  CAS  Google Scholar 

  22. Morild, E. (1981). Advances in Protein Chemistry, 34, 93–166.

    Article  CAS  Google Scholar 

  23. Lawin, L. R., Fife, W. K., & Tian, C. X. (2000). Langmuir, 16, 3583–3587.

    Article  CAS  Google Scholar 

  24. Kodaka, M. (1983). Bulletin of the Chemical Society of Japan, 56, 191–2192.

    Google Scholar 

  25. Ishiwatari, T., & Fendler, H. (1994). Journal of the American Chemical Society, 106, 1908–1912.

    Article  Google Scholar 

  26. Menger, F. M., & Portnoy, C. E. (1967). Journal of the American Chemical Society, 901, 1875–1878.

    Google Scholar 

  27. Tee, O. S., & Enos, J. A. (1988). Canadian Journal of Chemistry, 66, 3027–3030.

    Article  CAS  Google Scholar 

  28. Yang, J., Koga, Y., Hideo, N., & Tsuneo, Y. (2002). Protein Engineering, 15, 147–152.

    Article  CAS  Google Scholar 

  29. Hayashi, T., & Ikada, Y. (1990). Biotechnology and Bioengineering, 36, 593–600.

    Article  CAS  Google Scholar 

  30. Macnaughton, S. J., & Foster, N. R. (1994). Industrial & Engineering Chemistry Research, 33, 2757–2763.

    Article  CAS  Google Scholar 

  31. Chapoy, A., Mohammadi, A. H., Chareton, A., Tohidi, B., & Richon, D. (2004). Industrial & Engineering Chemistry Research, 43, 1794–1802.

    Article  CAS  Google Scholar 

  32. Perrut, M. (1994). Chemical and Biochemical Engineering Quarterly, 8, 25–30.

    CAS  Google Scholar 

  33. Condoret, J.-S., Vankan, S., Joullia, X., & Marty, A. (1997). Chemical Engineering Science, 52, 213–220.

    Article  CAS  Google Scholar 

  34. Srivastava, S., Modak, J., & Madras, G. (2003). Journal of Supercritical Fluids, 27, 55–64.

    Article  CAS  Google Scholar 

  35. Almeida, M. C., Ruivo, R., Maia, C., Freire, L., Sampaio, T., & Barreiros, S. (2000). Enzyme and Microbial Technology, 22, 494–499.

    Article  Google Scholar 

  36. Martins, J. F., Carvalho, I. B., Sampaio, T. C., & Barreiros, S. (1994). Enzyme and Microbial Technology, 16, 785–789.

    Article  CAS  Google Scholar 

  37. Goddard, R., Bosley, J., & Al-Duri, B. (2000). Journal of Supercritical Fluids, 18, 121–130.

    Article  CAS  Google Scholar 

  38. Dumont, T., Barth, D., Corbier, C., & Branlant, G. (1992). Biotechnology and Bioengineering, 40, 329–334.

    Article  CAS  Google Scholar 

  39. Chrastill, J. (1982). Journal of Physical Chemistry, 86, 3016–3021.

    Article  Google Scholar 

  40. Nag, A. (1988). Journal of Surfaces Science and Technology, 4, 91–96.

    CAS  Google Scholar 

  41. Shishikura, A., Fujimoto, K., Suzuki, T., & Arai, K. (1994). Journal of the American Oil Chemists’ Society, 71, 961–967.

    Article  CAS  Google Scholar 

  42. Romero, M. D., Calvo, L., Alba, C., Habulin, M., Primožič, M., & Knez, Ž. (2005). The Journal of Supercritical Fluids, 33, 77–84.

    CAS  Google Scholar 

  43. Olsen, T., Kerton, F., Marriott, R., & Grogan, G. (2006). Enzyme and Microbial Technology, 39, 621.

    Article  CAS  Google Scholar 

  44. Gubicza, L., Kabiri-Badr, A., Deoves, E., & Belafi-Bako, K. (2000). Journal of Biotechnology, 84, 193.

    Article  CAS  Google Scholar 

  45. Güvenç, A., Kapucu, N., & Mehmetoğlu, Ü. (2002). Process Biochemistry, 10, 1–6.

    Google Scholar 

  46. Yadav, G. D., & Lathi, P. S. (2005). Journal of molecular catalysis. B, Enzymatic, 32, 107.

    Article  CAS  Google Scholar 

  47. Chulalaksananukul, W., Condoret, J. S., Delorme, P., & Willemot, R. M. (1990). FEBS Letters, 276, 181–184.

    Article  CAS  Google Scholar 

  48. Chulalaksananukul, S., Longo, M. A., Chulalaksananukul, W., Condoret, J.-S., & Combes, D. (1999). AFINIDAD LVI, 480, 121–125.

    Google Scholar 

  49. Valivety, R. H., Halling, P. J., & Macrae, A. R. (1993). Biotechnology Letters, 15, 1133–1138.

    Article  CAS  Google Scholar 

  50. Lai, D. T., Hattori, N., & O’Connor, C. J. (1999). Journal of the American Oil Chemists’ Society, 76, 845–851.

    Article  CAS  Google Scholar 

  51. Rizzi, M., Stylos, P., Riek, A., & Reuss, M. (1992). Enzyme and Microbial Technology, 14, 709–714.

    Article  CAS  Google Scholar 

  52. Straathof, A. J. J., Rakels, J. L. L., Heijnen, J. J. (1992). In J. Tramper, M. H. Vermuë, H. H. Beeftink, U. von Stockar (Eds.), (pp. 137–144). Amsterdam: Elsevier.

  53. Valivety, R. H., Halling, P. J., Peilow, A. D., & Macrae, A. R. (1992). Biochimica et Biophysica Acta, 1122, 143–146.

    CAS  Google Scholar 

  54. Martinelle, M., & Hult, K. (1995). Biochimica et Biophysica Acta, 125, 191–197.

    Google Scholar 

  55. Chulalaksananukul, W., Condoret, J. S., & Combes, D. (1993). Enzyme and Microbial Technology, 15, 691–698.

    Article  CAS  Google Scholar 

  56. Goddard, R., Bosley, J., & Al-Duri, B. (2000). Journal of Chemical Technology and Biotechnology, 75, 715–721.

    Article  CAS  Google Scholar 

  57. Goddard, R., Bosley, J., & Al-Duri, B. (2000). Journal of Supercritical Fluids, 18, 121–130.

    Article  CAS  Google Scholar 

  58. Paiva, A. V., Rossum, D. V., & Malcasa, F. X. (2002). Biocatalysis and Biotransformation, 20, 43.

    Article  CAS  Google Scholar 

  59. Goddard, R., Bosley, J., & Al-Duri, B. (2000). Journal of Supercritical Fluids, 18, 121.

    Article  CAS  Google Scholar 

  60. Hernandez, F. J., De los Rios, A. P., Gomez, D., Rubio, M., & Villora, G. (2006). Applied Catalysis B, Environmental, 67, 121.

    Article  CAS  Google Scholar 

  61. Marty, A., Chulalaksananukul, W., Willemot, R. M., & Condore, J. S. (1992). Biotechnology and Bioengineering, 39, 273–280.

    Article  CAS  Google Scholar 

  62. Rizzi, M., Stylos, P., Riek, A., & Reuss, M. (1992). Enzyme and Microbial Technology, 14, 709–714.

    Article  CAS  Google Scholar 

  63. Varma, M. N., & Madras, G. (2007). Industrial & Engineering Chemistry Research, 46, 1–6.

    Article  CAS  Google Scholar 

  64. Yu, Z. R., Rizvi, S. S. H., & Zollweg, J. A. (1992). Biotechnology Progress, 8, 508.

    Article  CAS  Google Scholar 

  65. Knez, Z., & Habulin, M. (1992). Progress in Biotechnology, 8, 401.

    CAS  Google Scholar 

  66. Knez, Z., & Habulin, M. (1994). Biocatalysis, 9, 115.

    Article  CAS  Google Scholar 

  67. Tewari, Y. B., Hara, T., Phinney, K. W., & Mayhew, M. P. (2004). Journal of Molecular Catalysis. B, Enzymatic, 30, 131.

    Article  CAS  Google Scholar 

  68. Kamat, S., Critchley, G., Beckman, E. J., & Russell, A. J. (1995). Biotechnology and Bioengineering, 46, 610.

    Article  CAS  Google Scholar 

  69. Vermue, M. H., Tramper, J., Dejong, J. P. J., & Oostrom, W. H. M. (1992). Enzyme and Microbial Technology, 14, 649.

    Article  CAS  Google Scholar 

  70. Vija, H., Telling, A., & Tougu, V. (1997). Bioorganic & Medicinal Chemistry Letters, 7, 259.

    Article  CAS  Google Scholar 

  71. Paizs, C., Tosa, M., Bodai, V., Szakacs, G., Kmecz, I., Simandi, B., Majdik, C., Novak, L., Irimie, F. D., & Poppe, L. (2003). Tetrahedron: Asymmetry, 14, 1943.

    Article  CAS  Google Scholar 

  72. Holmes, J. D., Steytler, D. C., Rees, G. D., & Robinson, B. H. (1998). Langmuir, 14, 6371.

    Article  CAS  Google Scholar 

  73. Rantakyla, M., & Aaltonen, O. (1994). Biotechnology Letters, 16, 825.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Biotechnology, India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giridhar Madras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varma, M.N., Madras, G. Effect of Chain Length on Enzymatic Hydrolysis of p-Nitrophenyl Esters in Supercritical Carbon Dioxide. Appl Biochem Biotechnol 144, 213–223 (2008). https://doi.org/10.1007/s12010-007-8114-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8114-y

Keywords

Navigation