Skip to main content
Log in

Design and optimization of polyvinyl-nitride rubber for tensile strength analysis

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In view of its combination of distinctive qualities, including strong tensile and tearing strength along with exceptional dynamic capabilities, which make it a strategic and irreplaceable material to produce bigger tyres, rubber is among the most used polymer in the world. The most widely employed sealing material in mechanical components is rubber. Failing of the rubber sealing in structural parts that seal could result in disastrous mishaps. Rubber seals serve to eliminate scratches brought on by direct contact between the piston and the cylinder block's inner walls and stop the flow of hydraulic oil. Due to the challenging work environment and discomfort of replacing rubber, it is important to suggest greater standards for its dependability. The rubber's reliability may be impacted by several variables over its life cycle, including load fluctuations, environmental factors, and heat treatment. In the current study, polyvinyl-nitrile rubber was subjected to heat treatment. The heat treatment was conducted with varying four different parameters such as curing time, curing temperature, post curing temperature, and post curing time. Based on these four parameters, sixteen samples were heat-treated. The microhardness, tensile properties, and fracture behavior of the tensile samples were analyzed by using Vicker's microhardness tester, universal testing machine, and scanning electron microscope. The outcomes revealed that the curing temperature and curing time has a significant effect on the hardness and tensile properties, and the samples' strength increased by 25% for curing temperature of 170 °C. The fracture analysis revealed that the minimal variation in the fractured micrographs was seen during the heat-treated cycle, showing that the environment seems to have less impact on the rubber matrix's ability to adhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Braun, M.J., Hendricks, R.C., Canacci, V.: Flow visualization in a simulated brush seal. In: ASME Gas Turbine and Aeroengine Congress Paper ASME 90 GT-217, (1990)

  2. Braun, M.J., Hendricks, R.C., Yang, Y.: Effects of brush seal morphology on leakage and pressure drops. In: AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Paper AIAA 91-210, (1991)

  3. Braun, M.J., Canacci, V.A., Hendricks, R.C.: Flow visualization and quantitative velocity and pressure measurements in simulated single and double brush seals. Trib. Trans. 70–80 (1991)

  4. Braun, M., Canacci, V.: Flow visualization and motion analysis for a series of four sequential brush seals. In: AIAA/SAE/ASME/ASEE 26th Joint Propulsion Conference, Paper AIAA 90-2482 (1992)

  5. Carlile, J.A., Hendrics, R.C., Yoder, D.A.: Brush seal leakage performance with gaseous working fluids at static and low rotor speed conditions. ASME J. Eng. Gas Turbines Power 115, 397–403 (1993)

    Article  Google Scholar 

  6. Giesler, W., Mathis, D., Hager, J.: High reliability oil-air high-speed gearbox clearance seal. In: AIAA/SAE/ASME/ASEE 34th Joint Propulsion Conference, Paper AIAA 98-3287, (1998)

  7. Menendez, R.P.: Development of lift-off seal technology for air/oil axial sealing applications. In: AIAA/SAE/ASME/ASEE 35th Joint Propulsion Conference, pp. 99–110, (1999)

  8. Chen, L.H., Wood, P.E., Jones, T.V., et al.: Detailed experimental studies of flow in large scale brush seal model and a comparison with CFD predictions. Trans. ASME. 122, 672–679 (2000)

    Google Scholar 

  9. Zhao, H., Stango, R.J.: Effect of flow-induced radial load on brush seal/rotor contact mechanics. Trans. ASME. 126, 208–215 (2004)

    Article  Google Scholar 

  10. Nitin Bhate, A.C. Non-metallic brush seals for gas turbine bearings. In: ASME Turbo Expo 2004: Power for Land, Sea and Air, pp. 1–6. ASME. Vienna, (2004)

  11. Dogu, Y.: Investigation of brush seal flow characteristics using bulk porous medium approach. Trans. ASME. 127, 136–143 (2005)

    Google Scholar 

  12. Cesare Guardino, J.W.: Numerical simulation of three-dimensional bristle bending in brush seals. J. Eng. Gas Turbines Power 127, 583–590 (2005)

    Article  Google Scholar 

  13. Saber, E., Khaled, M.: Advanced seal design for rotating machinery. Am. J. Sci. Indus. Res. 2, 58–68 (2011)

    Google Scholar 

  14. Green, I., Etsion, I.: Pressure and squeeze effects on the dynamic characteristics of elastomer 0-rings under small reciprocating motion. J. Tribol. 108, 439–444 (1986)

    Article  Google Scholar 

  15. Meeker, W.Q., Escobar, L.A., Lu, C.J.: Accelerated degradation tests: modeling and analysis. Technometrics 40(2), 89–99 (1999)

    Article  Google Scholar 

  16. Mingjun, Z., Jilong, X.: Finite element analysis of large deformation of rubber parts under compression. J. Beijing Jiaotong Univ. 25, 76–79 (2001)

    Google Scholar 

  17. Chupp, R.E., Ghasripoo, F.: Advanced seals for industiral turbine applicaitons: dynamic seal development. J. Propul. Power 18, 1260–1265 (2002)

    Article  Google Scholar 

  18. Morell, P.R., Patel, M., Skinner, A.R.: Accelerated thermal ageing studies on nitrile rubber O-rings. Polym. Test. 22(6), 651–656 (2003)

    Article  Google Scholar 

  19. Chivers, T.C., Geroge, A.F.: EPDM and fluorocarbon seal materials: a comparison of performance for nuclear fuel transport flasks. In: 14th International Symposium on the Packaging and Transportation of Radioactive Materials. Berlin, (2004)

  20. Kommling, M.J.: Influence of ageing on sealability of elastomeric O-rings. In: Macromol Symposium (pp. 1–10). Wiley, Weinheim, (2017)

  21. Liao, B., Sun, B., Yan, M., et al.: Time-variant reliability analysis for rubber O-ring seal considering both material degradation and random load. Materials 10, 1211 (2017)

    Article  Google Scholar 

  22. Zhang, J., Xie, J.: Investigation of static and dynamic seal performances of a rubber O-ring. J. Tribol. 140, 042202 (2018)

    Article  Google Scholar 

  23. Pearl, D.R.: O-ring seals in the design of hydraulic mechanism. SAI annual meeting. Jan 1947.

  24. Parker, O.: Parker O-ring Handbook. Parker Hannifin Corporation, Cleveland (2018)

    Google Scholar 

  25. Thomas, A.G.: Factors influencing the strength of rubbers. J. Polym. Sci. 48, 145–157 (1974)

    Google Scholar 

  26. Pornprasit, R., Pornprasit, P., et al.: Determination of the mechanical properties of rubber by FT-NIR. J. Spect. 1–7 (2016)

  27. Aji, H.S., Soepangkat, B.O.P., Santosa, B., Norcahyo, R.: Multi objective optimization of vulcanization process parameters for reducing quality loss cost based on BPNN-PSO method. In: AIP Conference Proceedings, vol. 2114, p. 020012, (2019)

  28. Schulze, D., Fengler, P., Stark, W.: The determination of ozone concentration for ozone resistance tests of elastomers. KGK Kaut. Gummi Kunstst. 64, 15–19 (2011)

    Google Scholar 

  29. Kulkarni, S.D., Manjunatha, C.U.: Effect of manufacturing process parameters on the tear strength and compression set of polyvinyl-nitrile rubber for sealing applications. Eur. Chem. Bull. 12, 245–258 (2023). https://doi.org/10.31838/ecb/2023.12.s1.027

    Article  Google Scholar 

  30. Kulkarni, S.D., Manjunatha, B., Chandrasekhar, U., Siddesh, G.K., Lenin, H., Arul, S.J.: Effect of curing temperature and time on mechanical properties of vinyl polymer material for sealing applications in industry using machine learning techniques. Adv. Polym. Technol. (2023). https://doi.org/10.1155/2023/9964610

    Article  Google Scholar 

  31. Pornprasit, R., Pornprasit, P., Boonma, P., Natwichai, J.: Determination of the mechanical properties of rubber by FT-NIR. J. Spect. 4024783, 7 (2016)

    Google Scholar 

  32. Clarke, J., Clarke, B., Freakley, P.K., Sutherland, I.: Compatibilising effect of carbon black on morphology of NRNBR blends. Plast. Rubber Compos. Process. Appl. 30(1), 39–44 (2001)

    Article  Google Scholar 

  33. Chough, S.-H., Chang, D.-H.: Kinetics of sulfur vulcanization of NR, BR, SBR, and their blends using a rheometer and DSC. J. Appl. Polym. Sci. 61(3), 449–454 (1996)

    Article  Google Scholar 

  34. White, R.: Fractography of Rubbery Materials, p. 33. Elsevier Science Publishers, LTD, London (1991)

    Book  Google Scholar 

  35. Jenkins, R.C., Meherc, J.W., Linn, J.V.: Paper No. 184th Fall Technical Meeting, Rubber Division, ACS, (1963)

  36. Vasudev, H., Prakash, C.: Surface engineering and performance of biomaterials: editorial. J. Electrochem. Sci. Eng. 13(1), 1–3 (2023). https://doi.org/10.5599/jese.1698

    Article  Google Scholar 

  37. Poojari, M., Hanumanthappa, H., et al.: Computational modelling for the manufacturing of solar-powered multifunctional agricultural robot. Int. J. Inter. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01291-y

    Article  Google Scholar 

  38. Manjunatha, C., et al.: Influence of microstructural characteristics on wear and corrosion behaviour of Si3N4 reinforced Al2219 composites. Adv. Mater. Sci. Eng. 2023, 1120569 (2023). https://doi.org/10.1155/2023/1120569

    Article  Google Scholar 

  39. Sharanabasva, H., et al.: Characterization and wear behavior of NiCrMoSi microwave cladding. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-07998-z

    Article  Google Scholar 

  40. Mehta, A., Singh, G.: Consequences of hydroxyapatite doping using plasma spray to implant biomaterials: review paper. J. Electrochem. Sci. Eng. 13(1), 5–23 (2023). https://doi.org/10.5599/jese.1614

    Article  Google Scholar 

  41. Nithin, H.S., Nishchitha, K.M., Pradeep, D.G., Durga Prasad, C., et al.: Comparative analysis of CoCrAlY coatings at high temperature oxidation behavior using different reinforcement composition profiles. Weld. World 67, 585–592 (2023). https://doi.org/10.1007/s40194-022-01405-2

    Article  Google Scholar 

  42. Sharanabasva, H., et al.: Effect of Mo and SiC reinforced NiCr microwave cladding on microstructure, mechanical and wear properties. J. Instit. Eng. (2023). https://doi.org/10.1007/s40033-022-00445-8

    Article  Google Scholar 

  43. Naveen, D.C., et al.: Effects of polypropylene waste addition as coarse aggregate in concrete: experimental characterization and statistical analysis. Adv. Mater. Sci. Eng. (2022). https://doi.org/10.1155/2022/7886722

    Article  Google Scholar 

  44. Gowda, V., et al.: High-temperature tribological studies on hot forged Al6061- Tib2 in-situ composites. J. Bio Tribo-Corros. 8, 101 (2022). https://doi.org/10.1007/s40735-022-00699-5

    Article  Google Scholar 

  45. Madhusudana Reddy, G., et al.: Elevated temperature erosion performance of plasma sprayed NiCrAlY/TiO2 coating on MDN 420 steel substrate. Surf. Topogr. Metrol. Proper. 10, 025010 (2022). https://doi.org/10.1088/2051-672X/ac6a6e

    Article  Google Scholar 

  46. Singh, J., Singh, J.P., Kumar, S., Gill, H.S.: Short review on hydroxyapatite powder coating for SS 316L: review paper. J. Electrochem. Sci. Eng. 13(1), 25–39 (2023). https://doi.org/10.5599/jese.1611

    Article  Google Scholar 

  47. Prashar, G., Vasudev, H.: Understanding cold spray technology for hydroxyapatite deposition: review paper. J. Electrochem. Sci. Eng. 13(1), 41–62 (2023). https://doi.org/10.5599/jese.1424

    Article  Google Scholar 

  48. Madhusudana Reddy, G., et al.: Investigation of thermally sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermet composite coatings on titanium alloys. Eng. Res. Express 4, 025049 (2022). https://doi.org/10.1088/2631-8695/ac7946

    Article  Google Scholar 

  49. Madhusudana Reddy, G., et al.: High temperature oxidation behavior of plasma sprayed NiCrAlY/TiO2 & NiCrAlY /Cr2O3/YSZ coatings on titanium alloy. Weld. World (2022). https://doi.org/10.1007/s40194-022-01268-7

    Article  Google Scholar 

  50. Naik, T., et al.: Effect of laser post treatment on microstructural and sliding wear behavior of HVOF sprayed NiCrC and NiCrSi coatings. Surf. Rev. Lett. 29(1), 225000 (2022). https://doi.org/10.1142/S0218625X2250007X

    Article  Google Scholar 

  51. Madhusudana Reddy, G., et al.: High temperature oxidation studies of plasma sprayed NiCrAlY/TiO2 & NiCrAlY/Cr2O3/YSZ cermet composite coatings on MDN-420 special steel alloy. Metallogr. Microst. Anal. 10, 642–651 (2021). https://doi.org/10.1007/s13632-021-00784-0

    Article  Google Scholar 

  52. Mathapati, M., et al.: A review on fly ash utilization. Mater. Today Proc. Sci. 50, 1535–1540 (2022). https://doi.org/10.1016/j.matpr.2021.09.106

    Article  Google Scholar 

  53. Dinesh, R., et al.: Feasibility study on MoCoCrSi/ WC-Co cladding developed on austenitic stainless steel using microwave hybrid heating. J. Mines Metals Fuels (2021). https://doi.org/10.18311/jmmf/2021/30113

    Article  Google Scholar 

  54. Durga Prasad, C., Lingappa, S., Sharnappa Joladarashi, M.R., Ramesh, S.B.: Characterization and sliding wear behavior of CoMoCrSi+flyash composite cladding processed by microwave irradiation. Mater. Today Proc 46, 2387–2391 (2021). https://doi.org/10.1016/j.matpr.2021.01.156

    Article  Google Scholar 

  55. Madhu, G., et al.: Evaluation of hot corrosion behavior of HVOF thermally sprayed Cr3C2 -35NiCr coating on SS 304 boiler tube steel. Am. Inst. Phys. 2316, 030014 (2021). https://doi.org/10.1063/5.0038279

    Article  Google Scholar 

  56. Reddy, M.S., Durga Prasad, C., Pradeep Patil, M.R., Ramesh, N.R.: Hot corrosion behavior of plasma sprayed NiCrAlY/TiO2 and NiCrAlY/Cr2O3/YSZ cermets coatings on alloy steel. Surf. Interf. Sci. 22, 100810 (2021). https://doi.org/10.1016/j.surfin.2020.100810

    Article  Google Scholar 

  57. Singh, J., Singh, S., Gill, R.: Applications of biopolymer coatings in biomedical engineering: review paper. J. Electrochem. Sci. Eng. 13(1), 63–81 (2022). https://doi.org/10.5599/jese.1460

    Article  Google Scholar 

  58. Singh, J., Singh, S., Verma, A.: Artificial intelligence in use of ZrO2 material in biomedical science: review paper. J. Electrochem. Sci. Eng. 13(1), 83–97 (2022). https://doi.org/10.5599/jese.1498

    Article  Google Scholar 

  59. Singh, G., Singh, R., Gul, J.: Machinability behavior of human implant materials: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 99–114 (2022). https://doi.org/10.5599/jese.1514

    Article  Google Scholar 

  60. Durga Prasad, C., et al.: Microstructure and tribological resistance of flame sprayed CoMoCrSi/WC-CrC-Ni and CoMoCrSi/WC-12Co composite coatings remelted by microwave hybrid heating. J. Bio Tribo-Corros. 6, 124 (2020). https://doi.org/10.1007/s40735-020-00421-3

    Article  Google Scholar 

  61. C. Durga Prasad, Sharnappa Joladarashi, M. R Ramesh, “Comparative Investigation of HVOF and Flame Sprayed CoMoCrSi Coating”. American Institute of Physics, 2247, 050004 (2020) https://doi.org/10.1063/5.0003883

  62. C. Durga Prasad, Akhil Jerri, M. R. Ramesh, “Characterization and Sliding Wear Behavior of Iron Based Metallic Coating Deposited by HVOF Process on Low Carbon Steel Substrate”. Journal of Bio and Tribo-Corrosion, Springer, 6, 69 (2020). https://doi.org/10.1007/s40735-020-00366-7

  63. C. Durga Prasad, Sharnappa Joladarashi, M. R. Ramesh, M. S. Srinath, B. H. Channabasappa. “Comparison of High Temperature Wear Behavior of Microwave Assisted HVOF Sprayed CoMoCrSi-WC-CrC-Ni/WC-12Co Composite Coatings”. Silicon, Springer, 12, pp 3027–3045 (2020) 1–19 https://doi.org/10.1007/s12633-020-00398-1

  64. Abdulaah, H.A., Al-Ghaban, A.M., Anaee, R.A., Khadom, A.A., Kadhim, M.M.: Cerium-tricalcium phosphate coating for 316L stainless steel in simulated human fluid: experimental, biological, theoretical, and electrochemical investigations: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 115–126 (2022). https://doi.org/10.5599/jese.1257

    Article  Google Scholar 

  65. Jawade, S., Kakandikar, G.: Relationship modelling for surface finish for laser-based additive manufacturing: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 127–135 (2023). https://doi.org/10.5599/jese.1286

    Article  Google Scholar 

  66. Durga Prasad, C., Sharnappa Joladarashi, M.R., Ramesh, M.S., Srinath, B., Channabasappa., H.: Effect of microwave heating on microstructure and elevated temperature adhesive wear behavior of HVOF deposited CoMoCrSi-Cr3C2 composite coating. Surf. Coat. Technol. 374, 291–304 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.056

    Article  Google Scholar 

  67. Durga Prasad, C., Sharnappa Joladarashi, M.R., Ramesh, M.S., Srinath, B., Channabasappa, H.: Development and sliding wear behavior of Co-Mo-Cr-Si cladding through microwave heating. SILICON 11, 2975–2986 (2019). https://doi.org/10.1007/s12633-019-0084-5

    Article  Google Scholar 

  68. Durga Prasad, C., Sharnappa Joladarashi, M.R., Ramesh, M.S., Srinath, B., Channabasappa., H.: Microstructure and tribological behavior of flame sprayed and microwave fused CoMoCrSi/CoMoCrSi-Cr3C2 Coatings. Mater. Res. Express 6, 026512 (2019). https://doi.org/10.1088/2053-1591/aaebd9

    Article  Google Scholar 

  69. Sandhu, K., Singh, G., Singh, S., Kumar, R., Prakash, C., Ramakrishna, S., Królczyk, G., Pruncu, C.I.: Surface characteristics of machined polystyrene with 3D printed thermoplastic tool. Materials. 13, 2729 (2020)

    Article  Google Scholar 

  70. Antil, P., Kumar Antil, S., Prakash, C., Krolczyk, G., Pruncu, C.: Multi-objective optimization of drilling parameters for orthopaedic implants. Measur. Contr. 53, 1902–1910 (2020)

    Article  Google Scholar 

  71. Kumar, A., Grover, N., Manna, A., Chohan, J.S., Kumar, R., Singh, S., Prakash, C., Pruncu, C.I.: Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. 29, 2633366X20963137 (2020)

    Article  Google Scholar 

  72. Durga Prasad, C., Sharnappa Joladarashi, M.R., Ramesh, M.S., Srinath, B., Channabasappa, H.: Influence of microwave hybrid heating on the sliding wear behaviour of HVOF sprayed CoMoCrSi coating. Mater. Res. Express 5, 086519 (2018). https://doi.org/10.1088/2053-1591/aad44e

    Article  Google Scholar 

  73. Durga Prasad, C., Sharnappa Joladarashi, M.R., Ramesh, A.S.: High temperature gradient cobalt based clad developed using microwave hybrid heating. Am. Inst. Phys. 1943, 020111 (2018). https://doi.org/10.1063/1.5029687

    Article  Google Scholar 

  74. Girisha, K.G., Sreenivas Rao, K.V., Durga Prasad, C.: Slurry erosion resistance of martenistic stainless steel with plasma sprayed Al2O3-40%TiO2 coatings. Mater. Today Proc. 5, 7388–7393 (2018). https://doi.org/10.1016/j.matpr.2017.11.409

    Article  Google Scholar 

  75. Girisha, K.G., Durga Prasad, C., Anil, K.C., Sreenivas Rao, K.V.: Dry sliding wear behaviour of Al2O3 coatings for AISI 410 grade stainless steel. Appl. Mech. Mater. 766–767, 585–589 (2015). https://doi.org/10.4028/www.scientific.net/AMM.766-767.585

    Article  Google Scholar 

  76. Girisha, K.G., Rakesh, R., Durga Prasad, C., Sreenivas Rao, K.V.: Development of corrosion resistance coating for AISI 410 grade steel. Appl. Mech. Mater. 813–814, 135–139 (2015). https://doi.org/10.4028/www.scientific.net/AMM.813-814.135

    Article  Google Scholar 

  77. Kundu, S., Thakur, L.: Microhardness and biological behavior of AZ91D-nHAp surface composite for bio-implants: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 137–147 (2022). https://doi.org/10.5599/jese.1316

    Article  Google Scholar 

  78. Channi, A.S., Bains, H.S., Grewal, J.S., Chidambranathan, V.S., Kumar, R.: Tool wear rate during electrical discharge machining for aluminium metal matrix composite prepared by squeeze casting: a prospect as a biomaterial: original scientific paper. J. Electrochem. Sci. Eng. 13(1), 149–162 (2022). https://doi.org/10.5599/jese.1391

    Article  Google Scholar 

  79. Yedida, V.V.S., Vasudev, H.: Mechanical and microstructural characterization of YSZ/Al2O3/CeO2 plasma sprayed coatings: original scientific paper. J. Electrochem. Sci. Eng. 13, 163–172 (2022). https://doi.org/10.5599/jese.1431

    Article  Google Scholar 

  80. Singh, J.P., Sharma, Y.: Corrosion cracking in Mg alloys based bioimplants: review paper. J. Electrochem. Sci. Eng. 13(1), 193–214 (2023). https://doi.org/10.5599/jese.1636

    Article  Google Scholar 

  81. Raghavan, V., Rajasekaran, S.J.: Corrigendum to Palmyra palm flower biomass-derived activated porous carbon and its application as a supercapacitor electrode: corrigendum. J. Electrochem. Sci. Eng. 13(1), 215 (2023). https://doi.org/10.5599/jese.1658

    Article  Google Scholar 

  82. Akande, I.G., Fayomi, O.S.I., Akpan, B.J., Aogo, O.A., Onwordi, P.N.: Exploration of the effect of Zn-MgO-UPP coating on hardness, corrosion resistance and microstructure properties of mild steel: original scientific paper. J. Electrochem. Sci. Eng. 12(5), 829–840 (2022). https://doi.org/10.5599/jese.1311

    Article  Google Scholar 

  83. Singh, M., Vasudev, H., Singh, M.: Surface protection of SS-316L with boron nitride based thin films using radio frequency magnetron sputtering technique: original scientific paper. J. Electrochem. Sci. Eng. 12(5), 851–863 (2022). https://doi.org/10.5599/jese.1247

    Article  Google Scholar 

  84. Prakash, C., Nagarajan, R.: Outburst susceptibility assessment of moraine-dammed lakes in Western Himalaya using an analytic hierarchy process. Earth Surf. Proc. Land. 42, 2306–2321 (2017)

    Article  Google Scholar 

  85. Singh, S., Prakash, C., Antil, P., Singh, R., Królczyk, G., Pruncu, C.I.: Dimensionless analysis for investigating the quality characteristics of aluminium matrix composites prepared through fused deposition modelling assisted investment casting. Materials. 12, 1907 (2019)

    Article  Google Scholar 

  86. Singh, S., Singh, N., Gupta, M., Prakash, C., Singh, R.: Mechanical feasibility of ABS/HIPS-based multi-material structures primed by low-cost polymer printer. Rapid Prototyp. J. 25, 152–161 (2019)

    Article  Google Scholar 

  87. Kumar, R., Ranjan, N., Kumar, V., Kumar, R., Chohan, J.S., Yadav, A., Sharma, S., Prakash, C., Singh, S., Li, C.: Characterization of friction stir-welded polylactic acid/aluminum composite primed through fused filament fabrication. J. Mater. Eng. Perfor. 2021, 1–19 (2021)

    Google Scholar 

  88. Singh, H., Singh, S., Prakash, C.: Current trends in biomaterials and bio-manufacturing. Biomanufacturing 2019, 1–34 (2019)

    Google Scholar 

  89. Jin, S.Y., Pramanik, A., Basak, A.K., Prakash, C., Shankar, S., Debnath, S.: Burr formation and its treatments—a review. Int. J. Adv. Manuf. Technol. 107, 2189–2210 (2020)

    Article  Google Scholar 

  90. Prakash, C., Singh, S., Ramakrishna, S., Królczyk, G., Le, C.H.: Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications. J. Alloy. Compd. 824, 153774 (2020)

    Article  Google Scholar 

  91. Uddin, M., Basak, A., Pramanik, A., Singh, S., Krolczyk, G.M., Prakash, C.: Evaluating hole quality in drilling of Al 6061 alloys. Materials. 11, 2443 (2018)

    Article  Google Scholar 

  92. Pandey, A., Singh, G., Singh, S., Jha, K., Prakash, C.: 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings. J. Mech. Behav. Biomed. Mater. 108, 103781 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sudheer D. Kulkarni or C. Durga Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S.D., Manjunatha, Chandrasekhar, U. et al. Design and optimization of polyvinyl-nitride rubber for tensile strength analysis. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01405-6

Keywords

Navigation