Skip to main content
Log in

Biological knowledge capture and representation inspired by Zachman Framework principles

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The biological knowledge capture and its representation in bioinspired design are challenging as knowledge is widely scattered, bulky and complicated due to its cross-domain nature. There is a dearth of bioinspired design firms, and the roles of their actors are ignored. Various causal and functional models developed hardly represent collective knowledge and are less useful for designers. To overcome these challenges, we have used the Zachman Framework in two ways. The Zachman Framework is primarily used to represent complex objects with much information from an architectural perspective. Firstly, by using the original Zachman Framework, we represent knowledge transfer in a bioinspired design organization. Secondly, we modify the Zachman Framework to represent the biological entities. We present a complete description, methodology, and approach for both these cases. The goal of first approach is to organize and represent captured knowledge transfer and make it readily available for stakeholders for making design decisions. The second approach as modified framework is significant as it can represent knowledge of any biological entity in its entirety as a knowledge capsule. The contribution of this paper is to propose approaches for using the Zachman Framework that provides a mechanism to ensure that the holistic bioinspired knowledge activities are able to drive the bioinspired design cycle and applicable to all bioinspired design studios. The guidance provided by the adapted Zachman Framework can help designers in deciding whether to attend or to ignore the biological entity, supporting the learning environments and validating for the knowledge addition in real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma, S., Sarkar, P.: Biomimicry: Exploring Research, Challenges, Gaps, and Tools. In: Chakrabarti, A. (ed.) Research into Design for a Connected World, pp. 87–97. Springer Singapore, Singapore (2019). https://doi.org/10.1007/978-981-13-5974-3_8

    Chapter  Google Scholar 

  2. Scali, M., Kreeft, D., Breedveld, P., Dodou, D.: Design and evaluation of a wasp-inspired steerable needle. Presented at the SPIE Smart Structures and Materials + nondestructive evaluation and health monitoring, Portland, Oregon. United States April. 17 (2017). https://doi.org/10.1117/12.2259978

  3. Fish, F.E., Weber, P.W., Murray, M.M., Howle, L.E.: The tubercles on Humpback Whales’ Flippers: application of Bio-Inspired Technology. Integr. Comp. Biology. 51, 203–213 (2011). https://doi.org/10.1093/icb/icr016

    Article  Google Scholar 

  4. Ahn, B.K.: Perspectives on mussel-inspired wet adhesion. J. Am. Chem. Soc. 139, 10166–10171 (2017). https://doi.org/10.1021/jacs.6b13149

    Article  Google Scholar 

  5. Mead, T.L.: Biologically-inspired innovation in large companies: a path for corporate participation in biophysical systems? Int. J. DNE. 9, 216–229 (2014). https://doi.org/10.2495/DNE-V9-N3-216-229

    Article  Google Scholar 

  6. Zachman, J.: A framework for information systems architecture. IBM Syst. J. 26, 454–470 (1987)

    Article  Google Scholar 

  7. Zachman, J.: The Framework for Enterprise Architecture: Background, Description and Utility, https://www.zachman.com/resources/ea-articles-reference/327-the-framework-for-enterprise-architecture-background-description-and-utility-by-john-a-zachman

  8. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for information systems architecture. IBM Syst. J. 31, 590–616 (1992). https://doi.org/10.1147/sj.313.0590

    Article  Google Scholar 

  9. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 38, 454–470 (1999). https://doi.org/10.1147/sj.382.0454

    Article  Google Scholar 

  10. Noran, O.: An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control. 27, 163–183 (2003). https://doi.org/10.1016/j.arcontrol.2003.09.002

    Article  Google Scholar 

  11. Farazmand, E., Moeini, A.: A framework for knowledge management architecture. In: Proceedings of the 13th International Conference on Enterprise Information Systems. pp. 425–430. SciTePress - Science and and Technology Publications, Beijing, China (2011). https://doi.org/10.5220/0003492504250430

  12. Pienimäki, T.: A business application architecture framework in manufacturing industry, (2005)

  13. Ylimaki, T., Halttunen, V.: Method engineering in practice: a case of applying the Zachman framework in the context of small enterprise architecture oriented projects. Inform. Knowl. Syst. Manage. 5, 189–209 (2005)

    Google Scholar 

  14. Wegmann, A., Kotsalainen, A., Matthey, L., Regev, G., Giannattasio, A.: Augmenting the Zachman Enterprise Architecture Framework with a Systemic Conceptualization. In: 2008 12th International IEEE Enterprise Distributed Object Computing Conference. pp. 3–13. IEEE, Munich, Germany (2008). https://doi.org/10.1109/EDOC.2008.49

  15. Lapalme, J., Gerber, A., Van der Merwe, A., Zachman, J., Vries, M.D., Hinkelmann, K.: Exploring the future of enterprise architecture: a Zachman perspective. Computers in Industry. 79, 103–113 (2016). https://doi.org/10.1016/j.compind.2015.06.010

    Article  Google Scholar 

  16. McMahon, C., Lowe, A., Culley, S.: Knowledge management in engineering design: personalization and codification. J. Eng. Des. 15, 307–325 (2004). https://doi.org/10.1080/09544820410001697154

    Article  Google Scholar 

  17. Brandt, S.C., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., Marquardt, W.: An ontology-based approach to knowledge management in design processes. Computers & Chemical Engineering. 32, 320–342 (2008). https://doi.org/10.1016/j.compchemeng.2007.04.013

    Article  Google Scholar 

  18. Tatar, U., Karabacak, B., Katina, P.F., Igonor, A.: A complex structure representation of the US critical infrastructure protection program based on the Zachman framework. IJSSE. 9, 221–234 (2019). https://doi.org/10.1504/IJSSE.2019.102869

    Article  Google Scholar 

  19. Dantu, B., Smith, E.: Medical process modeling with a Hybrid System Dynamics Zachman Framework. Procedia Comput. Sci. 6, 76–81 (2011). https://doi.org/10.1016/j.procs.2011.08.016

    Article  Google Scholar 

  20. Danny, J., Shanlunt, Wang, G., Alianto, H.: The Application of Zachman Framework in Improving Better Decision Making. In: 2018 Indonesian Association for Pattern Recognition International Conference (INAPR). pp. 245–249. IEEE, Jakarta, Indonesia (2018). https://doi.org/10.1109/INAPR.2018.8627041

  21. Mani, M., Uludag, S., Zolinski, C.: On evaluating the Use of Zachman Framework in Computer Science and Information Systems classes. J. Comput. Sci. Colleges. 31, 47–59 (2015)

    Google Scholar 

  22. Abdullah, A., Zainab, A.N.: The digital library as an enterprise: the Zachman approach. Electron. Libr. 26, 446–467 (2008). https://doi.org/10.1108/02640470810893729

    Article  Google Scholar 

  23. Rachuri, S., Sarkar, P., Narayanan, A., Lee, J.H., Witherell, P.: Towards a methodology for analyzing sustainability Standards using the Zachman Framework. In: Hesselbach, J., Herrmann, C. (eds.) Glocalized Solutions for Sustainability in Manufacturing, pp. 543–548. Springer Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19692-8_94

    Chapter  Google Scholar 

  24. Kurniawan, H., Salim, A., Suhartanto, H., Hasibuan, Z.A.: E-cultural heritage and natural history framework: An integrated approach to digital preservation. In: Proc. of CSIT. pp. 177–182. IACSIT Press, Singapore (2011)

  25. Urbanic, R.J., ElMaraghy, W.: A design recovery framework for mechanical components. J. Eng. Des. 20, 195–215 (2009). https://doi.org/10.1080/09544820701802261

    Article  Google Scholar 

  26. Chen, Z., Pooley, R.: Rediscovering Zachman Framework Using Ontology from a Requirement Engineering Perspective. In: 33rd Annual IEEE International Computer Software and Applications Conference. pp. 3–8. IEEE, Seattle: Washington, USA (2009). (2009). https://doi.org/10.1109/COMPSAC.2009.107

  27. Andry, J.F., Liliana, L., Chakir, A.: Enterprise Architecture Landscape using Zachman Framework and Ward Peppard Analysis for Electrical Equipment Export Import Company. Trends Sci. 18, 23 (2021). https://doi.org/10.48048/tis.2021.23

    Article  Google Scholar 

  28. Madyatmadja, E.D., Liliana, L., Chakir, A., Andry, J.F.: Implementation of the Zachman Framework using CAPSICUM Model for Electrical Equipment Trading Industry. ICIC Express Letters Part B: Applications. 12, 207–213 (2021). https://doi.org/10.24507/icicelb.12.03.207

    Article  Google Scholar 

  29. Sudarsono, B.G., Andry, J.F., Rahman, A.B.A.: Redesign the Forwarding Company’s business processes using the Zachman Framework. J. Theoretical Appl. Inform. Technol. 98, 3222–3232 (2005)

    Google Scholar 

  30. Sardjono, W., Retnowardhani, A., Azizah, R., Maryani: Analysis of Application of Zachman Framework For Knowledge Management Systems Success Optimization. In: 2020 International Conference on Information Management and Technology (ICIMTech). pp. 277–282. IEEE, Bandung, Indonesia (2020). https://doi.org/10.1109/ICIMTech50083.2020.9211110

  31. Robertson, B.: Organization at the leading edge: Introducing holacracy.Integral Leadership Review.7, (2007)

  32. Levitt, R.E., Thomsen, J., Christiansen, T.R., Kunz, J.C., Jin, Y., Nass, C.: Simulating project work processes and Organizations: toward a Micro-Contingency Theory of Organizational Design. Manage. Sci. 45, 1479–1495 (1999). https://doi.org/10.1287/mnsc.45.11.1479

    Article  MATH  Google Scholar 

  33. Caramihai, S.I., Dumitrache, I., Moisescu, M.A., Sacala, I.S.: Bio-inspired Autonomous Enterprise Systems. IFAC-PapersOnLine. 53, 10879–10884 (2020). https://doi.org/10.1016/j.ifacol.2020.12.2820

    Article  Google Scholar 

  34. Gero, J.S.: Design prototypes: a knowledge representation Schema for Design. AI Magazine. 11, 26–36 (1990)

    Google Scholar 

  35. Christophe, F., Bernard, A., Coatanéa, Ã.: RFBS: a model for knowledge representation of conceptual design. CIRP Annals. 59, 155–158 (2010). https://doi.org/10.1016/j.cirp.2010.03.105

    Article  Google Scholar 

  36. Umeda, Y., Tomiyama, T.: Functional reasoning in design. IEEE Expert. 12, 42–48 (1997). https://doi.org/10.1109/64.585103

    Article  Google Scholar 

  37. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Microstructural characterization and electrochemical corrosion behaviour of HVOF sprayed Alloy718-nanoAl2O3 composite coatings. Surf. Topogr : Metrol. Prop. 9, 035003 (2021). https://doi.org/10.1088/2051-672X/ac1044

    Article  Google Scholar 

  38. Prashar, G., Vasudev, H., Thakur, L.: Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: a review. Surf. Topogr : Metrol. Prop. 9, 043002 (2021). https://doi.org/10.1088/2051-672X/ac3a52

    Article  Google Scholar 

  39. Singh, G., Vasudev, H., Bansal, A., Vardhan, S., sharma, S.: Microwave cladding of Inconel-625 on mild steel substrate for corrosion protection. Mater. Res. Express. 7, 026512 (2020). https://doi.org/10.1088/2053-1591/ab6fa3

    Article  Google Scholar 

  40. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Electrochemical Corrosion Behavior and Microstructural characterization of Hvof Sprayed INCONEL718-Al2O3 Composite Coatings. Surf. Rev. Lett. 29, 2250017 (2022). https://doi.org/10.1142/S0218625X22500172

    Article  Google Scholar 

  41. Prashar, G., Vasudev, H.: High temperature erosion behavior of plasma sprayed Al2O3 coating on AISI-304 stainless steel. WJE. 18, 760–766 (2021). https://doi.org/10.1108/WJE-10-2020-0476

    Article  Google Scholar 

  42. Kumar, B., Sarkar, P.: Understanding Collaborative Interaction for varying product complexity. Int. J. e-Collaboration. 14, 19–48 (2018). https://doi.org/10.4018/IJeC.2018070102

    Article  Google Scholar 

  43. Prashar, G., Vasudev, H.: Structure-property correlation and high-temperature erosion performance of Inconel625-Al2O3 plasma-sprayed bimodal composite coatings. Surf. Coat. Technol. 439, 128450 (2022). https://doi.org/10.1016/j.surfcoat.2022.128450

    Article  Google Scholar 

  44. Bansal, A., Vasudev, H., Sharma, A.K., Kumar, P.: Investigation on the effect of post weld heat treatment on microwave joining of the Alloy-718 weldment. Mater. Res. Express. 6, 086554 (2019). https://doi.org/10.1088/2053-1591/ab1d9a

    Article  Google Scholar 

  45. Mehta, A., Vasudev, H., Singh, S.: Recent developments in the designing of deposition of thermal barrier coatings – A review. Materials Today: Proceedings. 26, 1336–1342 (2020). https://doi.org/10.1016/j.matpr.2020.02.271

  46. Vasudev, H., Thakur, L., Singh, H., Bansal, A.: Effect of addition of Al2O3 on the high-temperature solid particle erosion behaviour of HVOF sprayed Inconel-718 coatings. Mater. Today Commun. 30, 103017 (2022). https://doi.org/10.1016/j.mtcomm.2021.103017

    Article  Google Scholar 

  47. Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F., Gao, W.: The evolution, challenges, and future of knowledge representation in product design systems. Computer-Aided Des. 45, 204–228 (2013). https://doi.org/10.1016/j.cad.2012.08.006

    Article  Google Scholar 

  48. Vattam, S.S., Goel, A.K.: Foraging for Inspiration: Understanding and Supporting the Online Information Seeking Practices of Biologically Inspired Designers. In: Volume 9: 23rd International Conference on Design Theory and Methodology; 16th Design for Manufacturing and the Life Cycle Conference. pp. 177–186. ASMEDC, Washington, DC, USA (2011). https://doi.org/10.1115/DETC2011-48238

  49. Deldin, J.-M., Schuknecht, M.: The AskNature Database: Enabling Solutions in Biomimetic Design. In: Goel, A.K., McAdams, D.A., and Stone, R.B. (eds.) Biologically Inspired Design. pp. 17–27. Springer London, London (2014). https://doi.org/10.1007/978-1-4471-5248-4_2

  50. Kapilavai, A., Elara, R., Tan, N.: Bioinspired design: a case study of reconfigurable crawling-rolling robot. In: ICED 15, p. 12. Politecnico De Milano, Italy (2015)

    Google Scholar 

  51. Vattam, S.S., Goel, A.K.: Biological Solutions for Engineering problems: a study in Cross-Domain Textual Case-Based reasoning. In: Delany, S.J., Ontañón, S. (eds.) Case-Based Reasoning Research and Development, pp. 343–357. Springer Berlin Heidelberg, Saratoga Springs, NY (2013). https://doi.org/10.1007/978-3-642-39056-2_25

  52. Weidner, B.V., Nagel, J., Weber, H.-J.: Facilitation method for the translation of biological systems to technical design solutions. Int. J. Des. Creativity Innov. 6, 211–234 (2018). https://doi.org/10.1080/21650349.2018.1428689

    Article  Google Scholar 

  53. Sharma, S., Sarkar, P.: Knowledge capture and its representation using concept map in bioinspired design. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01069-8

    Article  Google Scholar 

  54. Töre Yargın, G., Moroşanu Firth, R., Crilly, N.: User requirements for analogical design support tools: learning from practitioners of bio-inspired design. Des. Stud. 58, 1–35 (2018). https://doi.org/10.1016/j.destud.2017.11.006

    Article  Google Scholar 

  55. Ertaul, L., Sudarsanam, R.: Security Planning Using Zachman Framework for Enterprises. 153–162 (2005)

  56. Hay, D.C.: The Zachman Framework: An Introduction, (1997)

  57. Hay, D.C.: A Different Kind of Life Cycle: The Zachman Framework, (2000)

  58. Bahill, T., Botta, R., Daniels, J.: The Zachman Framework Populated with Baseball Models. INCOSE International Symposium. 14, 1333–1350 (2006). https://doi.org/10.1002/j.2334-5837.2004.tb00576.x

  59. Ertaul, L., Vandana, S., Gulati, K., Saldamli, G.: Enterprise Security Planning using the Zachman Framework – Builder’s Perspective. In: Proceedings of the International Conference on Security and Management (SAM). pp. 1–7 (2011)

  60. Beck, S., Mahdad, M., Beukel, K., Poetz, M.: The value of scientific knowledge dissemination for Scientists—A Value capture perspective. Publications. 7, 54 (2019). https://doi.org/10.3390/publications7030054

    Article  Google Scholar 

  61. Fisher, K., Wandersee, J.H., Moody, D.: Mapping Biology Knowledge. Kluwer Academic Publishers, Dordrecht (2002). https://doi.org/10.1007/0-306-47225-2

    Book  Google Scholar 

  62. Bhasin, D., McAdams, D.: The characterization of Biological Organization, Abstraction, and Novelty in Biomimetic Design. Designs. 2, 54 (2018). https://doi.org/10.3390/designs2040054

    Article  Google Scholar 

  63. Gamel, K.M., Garner, A.M., Flammang, B.E.: Bioinspired remora adhesive disc offers insight into evolution. Bioinspir Biomim. 14, 056014 (2019). https://doi.org/10.1088/1748-3190/ab3895

    Article  Google Scholar 

  64. Graeff, E., Maranzana, N., Aoussat, A.: Engineers’ and Biologists’ Roles during Biomimetic Design Processes, Towards a Methodological Symbiosis. Proc. Int. Conf. Eng. Des. 1, 319–328 (2019). https://doi.org/10.1017/dsi.2019.35

  65. Graeff, E., Maranzana, N., Aoussat, A.: Biomimetics, where are the biologists? J. Eng. Des. 30, 289–310 (2019). https://doi.org/10.1080/09544828.2019.1642462

    Article  Google Scholar 

  66. Hashemi Farzaneh, H.: Bio-inspired design: the impact of collaboration between engineers and biologists on analogical transfer and ideation. Res. Eng. Design. (2020). https://doi.org/10.1007/s00163-020-00333-w

    Article  Google Scholar 

  67. Fu, K., Moreno, D., Yang, M., Wood, K.L.: Bio-Inspired Design: an overview investigating open questions from the broader field of design-by-analogy. J. Mech. Des. 136, 111102 (2014). https://doi.org/10.1115/1.4028289

    Article  Google Scholar 

  68. Fayemi, P.E., Wanieck, K., Zollfrank, C., Maranzana, N., Aoussat, A.: Biomimetics: process, tools and practice. Bioinspir Biomim. 12, 011002 (2017). https://doi.org/10.1088/1748-3190/12/1/011002

    Article  Google Scholar 

  69. Glier, M.W., Tsenn, J., Linsey, J.S., McAdams, D.A.: Evaluating the Directed Intuitive Approach for Bioinspired Design. J. Mech. Des. 136, 071012 (2014). https://doi.org/10.1115/1.4026825

    Article  Google Scholar 

  70. Lee, J.Y., Ahn, K., Lee, S.: Applying OWL ontology to Zachman Framework for Requirement Analysis. In: Advanced Science and Technology Letters. Sci. Eng. Res. Support Soc. 34–37 (2014). https://doi.org/10.14257/astl.2014.46.08

  71. Trotta, G.: Bio-inspired Design Methodology. IJIS. 1, 1–11 (2012). https://doi.org/10.5923/j.ijis.20110101.01

    Article  Google Scholar 

  72. Salgueiredo, C.F., Hatchuel, A.: Beyond analogy: a model of bioinspiration for creative design. AIEDAM. 30, 159–170 (2016). https://doi.org/10.1017/S0890060416000044

    Article  Google Scholar 

  73. Fayemi, P.-E., Maranzana, N., Aoussat, A., Chekchak, T., Bersano, G.: Modeling biological systems to facilitate their selection during a bio-inspired design process. In: ICED 15, p. 11. Politecnico De Milano, Italy (2015)

    Google Scholar 

  74. Zachman, J.A.: Zachman Framework ENTERPRISE Engineering and Manufacturing, www.ZachmanInternational.com, (2005)

  75. Thompson, C.L.: Scaling the Zachman Framework a Software Development Methodology for Non-Enterprise Applications, (2006)

  76. Eroglu, A.K., Erden, A., Erden, Z.: Biological System Analysis in Bioinspired conceptual design (BICD) for Bioinspired Robots. Control Eng. Appl. Inf. 13, 81–86 (2011)

    Google Scholar 

  77. Sartori, J., Pal, U., Chakrabarti, A.: A methodology for supporting “transfer” in biomimetic design. AIEDAM. 24, 483–506 (2010). https://doi.org/10.1017/S0890060410000351

    Article  Google Scholar 

  78. Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V., Orr, R.B., Campbell, N.A.: Campbell Biology. Pearson, New York, NY (2020)

    Google Scholar 

  79. Graham, L.E., Graham, J.M., Wilcox, L.W.: Plant Biology. Pearson Education, Harlow (2014)

    Google Scholar 

  80. Singh, M., Vasudev, H., Kumar, R.: Microstructural characterization of BN thin films using RF magnetron sputtering method, Materials Today: Proceedings. 26 2277–2282. (2020)

  81. Prashar, G., Vasudev, H., Thakur, L.: High-temperature oxidation and Erosion Resistance of Ni-Based thermally-sprayed Coatings used in Power Generation Machinery: a review. Surf. Rev. Lett. 29, 2230003 (2022)

    Article  Google Scholar 

  82. Vasudev, H., Singh, P., Thakur, L., Bansal, A.: Mechanical and microstructural characterization of microwave post processed Alloy-718 coating. Mater. Res. Express. 6, 1265f5 (2020)

    Article  Google Scholar 

  83. Vasudev, H., Prashar, G., Thakur, L., Bansal, A.: Electrochemical corrosion behavior and microstructural characterization of HVOF sprayed Inconel-718 coating on gray cast iron. J. Fail. Anal. Prev. 21, 250–260 (2021)

    Article  Google Scholar 

  84. Singh, G., Vasudev, H., Bansal, A., Vardhan, S.: Influence of heat treatment on the microstructure and corrosion properties of the Inconel-625 clad deposited by microwave heating. Surf. Topography: Metrol. Prop. 9, 25019 (2021)

    Google Scholar 

  85. Prashar, G., Vasudev, H.: Surface topology analysis of plasma sprayed Inconel625-Al2O3 composite coating, Materials Today: Proceedings. 50 607–611. (2022)

  86. Majji, B.G.R., Vasudev, H., Bansal, A.: A review on the oxidation and wear behavior of the thermally sprayed high-entropy alloys, Materials Today: Proceedings. 50 1447–1451. (2022)

  87. Mehta, A., Vasudev, H., Singh, S., Prakash, C., Saxena, K.K., Linul, E., Buddhi, D., Xu, J.: Processing and Advancements in the development of thermal barrier coatings: A Review, Coatings. 121318. (2022)

  88. Singh, M., Vasudev, H., Kumar, R.: Corrosion and tribological behaviour of bn thin films deposited using magnetron sputtering. Int. J. Surf. Eng. Interdisciplinary Mater. Sci. (IJSEIMS). 9, 24–39 (2021)

    Article  Google Scholar 

  89. Singh, P., Bansal, A., Vasudev, H.: In situ surface modification of stainless steel with hydroxyapatite using microwave heating. Surf. Topography: Metrol. Prop. 9, 35053 (2021). doi:https://doi.org/10.1088/2051-672X/ac28a9

    Article  Google Scholar 

  90. Dutta, V., Thakur, L., Singh, B., Vasudev, H.: A study of Erosion – corrosion Behaviour of Friction stir-processed chromium-reinforced NiAl bronze composite. Materials. 15, 5401 (2022). doi:https://doi.org/10.3390/ma15155401

    Article  Google Scholar 

  91. Helms, M., Vattam, S., Goel, A.: The Effect of Functional Modeling on Understanding Complex Biological Systems. In: Volume 5: 22nd International Conference on Design Theory and Methodology; Special Conference on Mechanical Vibration and Noise. pp. 107–115. ASMEDC, Montreal, Quebec, Canada (2010). https://doi.org/10.1115/DETC2010-28939

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Sarkar, P. Biological knowledge capture and representation inspired by Zachman Framework principles. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01259-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01259-y

Keywords

Navigation