Skip to main content

Advertisement

Log in

The 2011 ABJS Nicolas Andry Award: ‘Lab’-in-a-Knee: In Vivo Knee Forces, Kinematics, and Contact Analysis

  • Society Awards
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Tibiofemoral forces are important in the design and clinical outcomes of TKA. We developed a tibial tray with force transducers and a telemetry system to directly measure tibiofemoral compressive forces in vivo. Knee forces and kinematics traditionally have been measured under laboratory conditions. Although this approach is useful for quantitative measurements and experimental studies, the extrapolation of results to clinical conditions may not always be valid.

Questions/purposes

We therefore developed wearable monitoring equipment and computer algorithms for classifying and identifying unsupervised activities outside the laboratory.

Methods

Tibial forces were measured for activities of daily living, athletic and recreational activities, and with orthotics and braces, during 4 years postoperatively. Additional measurements included video motion analysis, EMG, fluoroscopic kinematic analysis, and ground reaction force measurement. In vivo measurements were used to evaluate computer models of the knee. Finite element models were used for contact analysis and for computing knee kinematics from measured knee forces. A third-generation system was developed for continuous monitoring of knee forces and kinematics outside the laboratory using a wearable data acquisition hardware.

Results

By using measured knee forces and knee flexion angle, we were able to compute femorotibial AP translation (−12 to +4 mm), mediolateral translation (−1 to 1.5 mm), axial rotation (−3° to 12°), and adduction-abduction (−1° to +1°). The neural-network-based classification system was able to identify walking, stair-climbing, sit-to-stand, and stand-to-sit activities with 100% accuracy.

Conclusions

Our data may be used to improve existing in vitro models and wear simulators, and enhance prosthetic designs and biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–B
Fig. 3
Fig. 4
Fig. 5A–J
Fig. 6
Fig. 7
Fig. 8A–C
Fig. 9A–C
Fig. 10
Fig. 11
Fig. 12A–B
Fig. 13A–G

Similar content being viewed by others

References

  1. Andriacchi TP. Dynamics of knee malalignment. Orthop Clin North Am. 1994;25:395–403.

    PubMed  CAS  Google Scholar 

  2. Baliunas AJ, Hurwitz DE, Ryals AB, Karrar A, Case JP, Block JA, Andriacchi TP. Increased knee joint loads during walking are present in subjects with knee osteoarthritis. Osteoarthritis Cartilage. 2002;10:573–579.

    Article  PubMed  CAS  Google Scholar 

  3. Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638–649.

    Article  PubMed  CAS  Google Scholar 

  4. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–990.

    Article  PubMed  CAS  Google Scholar 

  5. Brand RA, Pedersen DR, Davy DT, Kotzar GM, Heiple KG, Goldberg VM. Comparison of hip force calculations and measurements in the same patient. J Arthroplasty. 1994;9:45–51.

    Article  PubMed  CAS  Google Scholar 

  6. Collins JJ. The redundant nature of locomotor optimization laws. J Biomech. 1995;28:251–267.

    Article  PubMed  CAS  Google Scholar 

  7. Denis K, Van Ham G, Bellemans J, Labey L, Sloten JV, Van Audekercke R, Van der Perre G, De Schutter J. How correctly does an intramedullary rod represent the longitudinal tibial axes? Clin Orthop Relat Res. 2002;397:424–433.

    Article  PubMed  Google Scholar 

  8. Diduch DR, Insall JN, Scott WN, Scuderi GR, Font-Rodriguez D. Total knee replacement in young, active patients: long-term follow-up and functional outcome. J Bone Joint Surg Am. 1997;79:575–582.

    PubMed  CAS  Google Scholar 

  9. D’Lima DD, Patil S, Steklov N, Chien S, Colwell CW Jr. In vivo knee moments and shear after total knee arthroplasty. J Biomech. 2007;40(suppl 1):S11–S17.

    Article  PubMed  Google Scholar 

  10. D’Lima DD, Patil S, Steklov N, Colwell CW Jr. An ABJS Best Paper: Dynamic intraoperative ligament balancing for total knee arthroplasty. Clin Orthop Relat Res. 2007;463:208–212.

    PubMed  Google Scholar 

  11. D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr. The Chitranjan Ranawat Award: in vivo knee forces after total knee arthroplasty. Clin Orthop Relat Res. 2005;440:45–49.

    Article  PubMed  Google Scholar 

  12. D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW Jr. Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty. 2006;21:255–262.

    Article  PubMed  Google Scholar 

  13. D’Lima DD, Steklov N, Fregly BJ, Banks S, Colwell CW Jr. In vivo contact stresses during activities of daily living after knee arthroplasty. J Orthop Res. 2008;26:1549–1555.

    Article  PubMed  Google Scholar 

  14. D’Lima DD, Steklov N, Patil S, Colwell CW Jr. The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res. 2008;466:2605–2611.

    Article  PubMed  Google Scholar 

  15. D’Lima DD, Townsend CP, Arms SW, Morris BA, Colwell CW Jr. An implantable telemetry device to measure intra-articular tibial forces. J Biomech. 2005;38:299–304.

    Article  PubMed  Google Scholar 

  16. Erhart JC, Dyrby CO, D’Lima DD, Colwell CW, Andriacchi TP. Changes in in vivo knee loading with a variable-stiffness intervention shoe correlate with changes in the knee adduction moment. J Orthop Res. 2010;28:1548–1553.

    Article  PubMed  Google Scholar 

  17. Fregly BJ, Banks SA, D’Lima DD, Colwell CW Jr. Sensitivity of knee replacement contact calculations to kinematic measurement errors. J Orthop Res. 2008;26:1173–1179.

    Article  PubMed  Google Scholar 

  18. Fregly BJ, D’Lima DD, Colwell CW Jr. Effective gait patterns for offloading the medial compartment of the knee. J Orthop Res. 2009;27:1016–1021.

    Article  PubMed  Google Scholar 

  19. Hart R, Janecek M, Chaker A, Bucek P. Total knee arthroplasty implanted with and without kinematic navigation. Int Orthop. 2003;27:366–369.

    Article  PubMed  CAS  Google Scholar 

  20. Healy WL, Iorio R, Lemos MJ. Athletic activity after joint replacement. Am J Sports Med. 2001;29:377–388.

    PubMed  CAS  Google Scholar 

  21. International Standards Organization. Standard number 14243-3: Implants for surgery; Wear of total knee joint prostheses: Part 3: Loading and displacement parameters for wear-testing machines with displacement control and corresponding environmental conditions for test. Geneva, Switzerland. 2000.

  22. Jones DL, Cauley JA, Kriska AM, Wisniewski SR, Irrgang JJ, Heck DA, Kwoh CK, Crossett LS. Physical activity and risk of revision total knee arthroplasty in individuals with knee osteoarthritis: a matched case-control study. J Rheumatol. 2004;31:1384–1390.

    PubMed  Google Scholar 

  23. Kaufman KR, An KN, Litchy WJ, Morrey BF, Chao EY. Dynamic joint forces during knee isokinetic exercise. Am J Sports Med. 1991;19:305–316.

    Article  PubMed  CAS  Google Scholar 

  24. Kaufman KR, Kovacevic N, Irby SE, Colwell CW. Instrumented implant for measuring tibiofemoral forces. J Biomech. 1996;29:667–671.

    Article  PubMed  CAS  Google Scholar 

  25. Kessler O, Patil S, Colwell CW Jr, D’Lima DD. The effect of femoral component malrotation on patellar biomechanics. J Biomech. 2008;41:3332–3339.

    Article  PubMed  Google Scholar 

  26. Kirking B, Krevolin J, Townsend C, Colwell CW Jr, D’Lima DD. A multiaxial force-sensing implantable tibial prosthesis. J Biomech. 2006;39:1744–1751.

    Article  PubMed  Google Scholar 

  27. Komistek RD, Kane TR, Mahfouz M, Ochoa JA, Dennis DA. Knee mechanics: a review of past and present techniques to determine in vivo loads. J Biomech. 2005;38:215–228.

    Article  PubMed  Google Scholar 

  28. Komistek RD, Stiehl JB, Dennis DA, Paxson RD, Soutas-Little RW. Mathematical model of the lower extremity joint reaction forces using Kane’s method of dynamics. J Biomech. 1998;31:185–189.

    Article  PubMed  CAS  Google Scholar 

  29. Kurtz SM, Pruitt L, Jewett CW, Crawford RP, Crane DJ, Edidin AA. The yielding, plastic flow, and fracture behavior of ultra-high molecular weight polyethylene used in total joint replacements. Biomaterials. 1998;19:1989–2003.

    Article  PubMed  CAS  Google Scholar 

  30. Lavernia CJ, Sierra RJ, Hungerford DS, Krackow K. Activity level and wear in total knee arthroplasty: a study of autopsy retrieved specimens. J Arthroplasty. 2001;16:446–453.

    Article  PubMed  CAS  Google Scholar 

  31. Li G, Gil J, Kanamori A, Woo SL. A validated three-dimensional computational model of a human knee joint. J Biomech Eng. 1999;121:657–662.

    Article  PubMed  CAS  Google Scholar 

  32. Lotke PA, Ecker ML. Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am. 1977;59:77–79.

    PubMed  CAS  Google Scholar 

  33. Lutz GE, Palmitier RA, An KN, Chao EY. Comparison of tibiofemoral joint forces during open-kinetic-chain and closed-kinetic-chain exercises. J Bone Joint Surg Am. 1993;75:732–739.

    PubMed  CAS  Google Scholar 

  34. Maxwell SM, Hull ML. Measurement of strength and loading variables on the knee during Alpine skiing. J Biomech. 1989;22:609–624.

    Article  PubMed  CAS  Google Scholar 

  35. Mintz L, Tsao AK, McCrae CR, Stulberg SD, Wright T. The arthroscopic evaluation and characteristics of severe polyethylene wear in total knee arthroplasty. Clin Orthop Relat Res. 1991;273:215–222.

    PubMed  Google Scholar 

  36. Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis. 2002;61:617–622.

    Article  PubMed  CAS  Google Scholar 

  37. Mont MA, Marker DR, Seyler TM, Gordon N, Hungerford DS, Jones LC. Knee arthroplasties have similar results in high- and low-activity patients. Clin Orthop Relat Res. 2007;460:165–173.

    PubMed  Google Scholar 

  38. Mont MA, Rajadhyaksha AD, Marxen JL, Silberstein CE, Hungerford DS. Tennis after total knee arthroplasty. Am J Sports Med. 2002;30:163–166.

    PubMed  Google Scholar 

  39. Morlock M, Schneider E, Bluhm A, Vollmer M, Bergmann G, Muller V, Honl M. Duration and frequency of every day activities in total hip patients. J Biomech. 2001;34:873–881.

    Article  PubMed  CAS  Google Scholar 

  40. Morris BA, D’Lima DD, Slamin J, Kovacevic N, Arms SW, Townsend CP, Colwell CW Jr. e-Knee: evolution of the electronic knee prosthesis. Telemetry technology development. J Bone Joint Surg Am. 2001;83(suppl 2):62–66.

    PubMed  Google Scholar 

  41. Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech. 1970;3:51–61.

    Article  PubMed  CAS  Google Scholar 

  42. Mundermann A, Dyrby CO, Hurwitz DE, Sharma L, Andriacchi TP. Potential strategies to reduce medial compartment loading in patients with knee osteoarthritis of varying severity: reduced walking speed. Arthritis Rheum. 2004;50:1172–1178.

    Article  PubMed  Google Scholar 

  43. Nisell R, Ericson MO, Nemeth G, Ekholm J. Tibiofemoral joint forces during isokinetic knee extension. Am J Sports Med. 1989;17:49–54.

    Article  PubMed  CAS  Google Scholar 

  44. Patil S, Steklov N, Chien S, Colwell CW Jr, D’Lima DD. An analysis of in vivo knee forces while rising from a chair after knee arthroplasty. Transactions of the 53rd Annual Meeting of the Orthopaedic Research Society. San Diego, CA. 2007: Poster No 1836.

  45. Prodromos CC, Andriacchi TP, Galante JO. A relationship between gait and clinical changes following high tibial osteotomy. J Bone Joint Surg Am. 1985;67:1188–1194.

    PubMed  CAS  Google Scholar 

  46. Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. J Orthop Res. 1991;9:113–119.

    Article  PubMed  CAS  Google Scholar 

  47. Seireg A, Arvikar. The prediction of muscular load sharing and joint forces in the lower extremities during walking. J Biomech. 1975;8:89–102.

    Article  PubMed  CAS  Google Scholar 

  48. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM. Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res. 2002;404:7–13.

    Article  PubMed  Google Scholar 

  49. Simpson DJ, Gray H, D’Lima D, Murray DW, Gill HS. The effect of bearing congruency, thickness and alignment on the stresses in unicompartmental knee replacements. Clin Biomech (Bristol, Avon). 2008;23:1148–1157.

    Article  CAS  Google Scholar 

  50. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A. Positioning of total knee arthroplasty with and without navigation support: a prospective, randomised study. J Bone Joint Surg Br. 2003;85:830–835.

    PubMed  CAS  Google Scholar 

  51. Stockl B, Nogler M, Rosiek R, Fischer M, Krismer M, Kessler O. Navigation improves accuracy of rotational alignment in total knee arthroplasty. Clin Orthop Relat Res. 2004;426:180–186.

    Article  PubMed  Google Scholar 

  52. Szivek JA, Anderson PL, Benjamin JB. Average and peak contact stress distribution evaluation of total knee arthroplasties. J Arthroplasty. 1996;11:952–963.

    Article  PubMed  CAS  Google Scholar 

  53. Taylor WR, Heller MO, Bergmann G, Duda GN. Tibio-femoral loading during human gait and stair climbing. J Orthop Res. 2004;22:625–632.

    Article  PubMed  Google Scholar 

  54. Teter KE, Bregman D, Colwell CW Jr. Accuracy of intramedullary versus extramedullary tibial alignment cutting systems in total knee arthroplasty. Clin Orthop Relat Res. 1995;321:106–110.

    PubMed  Google Scholar 

  55. Varadarajan KM, Moynihan AL, D’Lima D, Colwell CW, Li G. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities. J Biomech. 2008;41:2159–2168.

    Article  PubMed  Google Scholar 

  56. Walter JP, D’Lima DD, Colwell CW Jr, Fregly BJ. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res. 2010;28:1348–1354.

    Article  PubMed  Google Scholar 

  57. Weiner DK, Long R, Hughes MA, Chandler J, Studenski S. When older adults face the chair-rise challenge: a study of chair height availability and height-modified chair-rise performance in the elderly. J Am Geriatr Soc. 1993;41:6–10.

    PubMed  CAS  Google Scholar 

  58. Wilk KE, Escamilla RF, Fleisig GS, Barrentine SW, Andrews JR, Boyd ML. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med. 1996;24:518–527.

    Article  PubMed  CAS  Google Scholar 

  59. Windsor RE, Scuderi GR, Moran MC, Insall JN. Mechanisms of failure of the femoral and tibial components in total knee arthroplasty. Clin Orthop Relat Res. 1989;248:15–19; discussion 19–20.

    PubMed  Google Scholar 

  60. Wong J, Steklov N, Patil S, Flores-Hernandez C, Kester M, Colwell CW Jr, D’Lima DD. Predicting the effect of tray malalignment on risk for bone damage and implant subsidence after total knee arthroplasty. J Orthop Res. 2011;29:347–353.

    Article  PubMed  Google Scholar 

  61. Zhao D, Banks SA, D’Lima DD, Colwell CW Jr, Fregly BJ. In vivo medial and lateral tibial loads during dynamic and high flexion activities. J Orthop Res. 2007;25:593–602.

    Article  PubMed  Google Scholar 

  62. Zhao D, Banks SA, Mitchell KH, D’Lima DD, Colwell CW Jr, Fregly BJ. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res. 2007;25:789–797.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

These studies have been possible because of active collaborations with Benjamin J. Fregly, PhD, University of Florida; Thomas Andriacchi PhD, Stanford University; Scott Banks PhD, BioMotion Foundation; Harry Rubash MD, and Guoan Li PhD, Harvard Medical Center; Ritchie Gill PhD, Oxford, UK; Richard Komistek PhD, University of Tennessee; Marcus Pandy PhD, Sydney, Australia; and Urs Wyss PhD, Calgary, Canada. In addition, the following allowed us to use their facilities: the TaylorMade Performance Lab, Carlsbad, CA; the Torrey Pines Golf Course, La Jolla, CA; and the La Jolla Beach and Tennis Club, La Jolla, CA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl D. D’Lima MD, PhD.

Additional information

One of the authors (DDD) received research support from Stryker, Zimmer, Smith & Nephew, and Tornier. One of the authors (CWC) is a consultant for Stryker.

One or more of the authors (DDD, CWC) received funding from the National Institutes of Health under the following grants: R01 EB009351 and R21 AR057561.

Each author certifies that his institution has approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for the study was obtained.

About this article

Cite this article

D’Lima, D.D., Patil, S., Steklov, N. et al. The 2011 ABJS Nicolas Andry Award: ‘Lab’-in-a-Knee: In Vivo Knee Forces, Kinematics, and Contact Analysis. Clin Orthop Relat Res 469, 2953–2970 (2011). https://doi.org/10.1007/s11999-011-1916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-011-1916-9

Keywords

Navigation