Skip to main content

Measuring In Vivo Joint Motion and Ligament Function: New Developments

  • Reference work entry
  • First Online:
Sports Injuries

Abstract

Recent technological advancements have enabled researchers to accurately measure in vivo 3-dimensional (3-D) joint kinematics, as well as to determine the corresponding forces experienced by the individual soft tissues in and around the joint. In this chapter, the development of these new approaches will be reviewed, as well as how they could be combined and used with computational models to examine the function of the anterior cruciate ligament (ACL) in vivo in a way that was not possible in the past.

To do this, we will use a road map that we introduced in 1999 showing how to combine in vivo kinematic data with (1) in vitro experimental data and (2) computational models, to predict ACL forces in vivo (Woo et al., Am J Sports Med 27:533–543, 1999a). To date, it is possible to measure the relative movements between the femur and tibia during in vivo activities accurately by means of biplanar fluoroscopy. Cadaveric knees can be tested on a robotic/universal force-moment sensor (UFS) testing system so that the in-situ forces in the ACL can be measured. Further, mathematical models of the knee, namely, the finite element model and the musculoskeletal model, have also been constructed to calculate the same forces in the ACL. We will discuss how these models could be validated and once validated, how they could become powerful and useful tools to determine the ACL function during more complicated in vivo activities, as well as be used to compile a database for gender-, age-, and size-dependent differences. The data can then be used to objectively evaluate new surgical procedures and rehabilitation protocols. In the end, the new knowledge gained should lead to improvements in the management of ACL injuries, as well as development of injury prevention strategies that are scientifically based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed AM, Burke DL, Duncan NA, Chan KH (1992) Ligament tension pattern in the flexed knee in combined passive anterior translation and axial rotation. J Orthop Res 10:854–867

    Article  CAS  Google Scholar 

  • Alexander EJ, Andriacchi TP (2001) Correcting for deformation in skin-based marker systems. J Biomech 34:355–361

    Article  CAS  Google Scholar 

  • Allen CR, Wong EK, Livesay GA, Sakane M, Fu FH, Woo SL-Y (2000) Importance of the medial meniscus in the anterior cruciate ligament-deficient knee. J Orthop Res 18:109–115

    Article  CAS  Google Scholar 

  • Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123:381–390

    Article  CAS  Google Scholar 

  • Andriacchi TP, Alexander EJ, Toney MK, Dyrby C (1998) A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng Trans ASME 120:743–749

    Article  CAS  Google Scholar 

  • Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649

    Article  CAS  Google Scholar 

  • Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee – biomechanical study. J Bone Joint Sur Am 62:259–270

    Article  CAS  Google Scholar 

  • Cappozzo A, Catani F, Leardini A, Benedetti MG, DellaCroce U (1996) Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech (Bristol, Avon) 11:90–100

    Article  CAS  Google Scholar 

  • Collins JJ, O’Connor JJ (1991) Muscle-ligament interactions at the knee during walking. Proc Inst Mech Eng [H] 205:11–18

    Article  CAS  Google Scholar 

  • Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient – a prospective outcome study. Am J Sports Med 22:632–644

    Article  CAS  Google Scholar 

  • Fujie H, Livesay GA, Woo SL-Y, Kashiwaguchi S, Blomstrom G (1995) The use of a universal force-moment sensor to determine in-situ forces in ligaments – a new methodology. J Biomech Eng Trans ASME 117:1–7

    Article  CAS  Google Scholar 

  • Furman W, Marshall JL, Girgis FG (1976) Anterior cruciate ligament – functional-analysis based on postmortem studies. J Bone Joint Surg Am 58:179–185

    Article  CAS  Google Scholar 

  • Grood ES, Suntay WJ, Noyes FR, Butler DL (1984) Biomechanics of the knee-extension Exercise – effect of cutting the anterior cruciate ligament. J Bone Joint Surg Am 66A:725–733

    Article  Google Scholar 

  • Hollis JM, Takai S, Adams DJ, Horibe S, Woo SL-Y (1991) The effects of knee motion and external loading on the length of the anterior cruciate ligament (ACL) – a kinematic study. J Biomech Eng Trans Asme 113:208–214

    Article  CAS  Google Scholar 

  • Kannus P, Jarvinen M (1987) Conservatively treated tears of the anterior cruciate ligament – long-term results. J Bone Joint Surg Am 69A:1007–1012

    Article  Google Scholar 

  • Komistek RD, Dennis DA, Northcut EJ, Wood A, Parker AW, Traina SM (1999) An in vivo analysis of the effectiveness of the osteoarthritic knee brace during heel-strike of gait. J Arthroplasty 14:738–742

    Article  CAS  Google Scholar 

  • Leys T, Salmon L, Waller A, Linklater J, Pinczewski L (2012) Clinical results and risk factors for reinjury 15 years after anterior cruciate ligament reconstruction: a prospective study of hamstring and patellar tendon grafts. Am J Sports Med 40:595–605

    Article  Google Scholar 

  • Li GA, Wuerz TH, DeFrate LE (2004) Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J Biomech Eng Trans Asme 126:314–318

    Article  Google Scholar 

  • Livesay GA, Fujie H, Kashiwaguchi S, Morrow DA, Fu FH, Woo SL-Y (1995) Determination of the in-situ forces and force distribution within the human anterior cruciate ligament. Ann Biomed Eng 23:467–474

    Article  CAS  Google Scholar 

  • Ma CB, Papageogiou CD, Debski RE, Woo SL-Y (2000) Interaction between the ACL graft and MCL in a combined ACL + MCL knee injury using a goat model. Acta Orthop Scand 71:387–393

    Article  CAS  Google Scholar 

  • Myers CA, Torry MR, Peterson DS, Shelburne KB, Giphart JE, Krong JP et al (2011) Measurements of tibiofemoral kinematics during soft and stiff drop landings using biplane fluoroscopy. Am J Sports Med 39:1714–1722

    Article  Google Scholar 

  • Myers CA, Torry MR, Shelburne KB, Giphart JE, LaPrade RF, Woo SLY et al (2012) In vivo tibiofemoral kinematics during 4 functional tasks of increasing demand using biplane fluoroscopy. Am J Sports Med 40:170–178

    Article  Google Scholar 

  • Neuman P, Kostogiannis I, Friden T, Roos H, Dahlberg LE, Englund M (2009) Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury – a prospective cohort study. Osteoarthritis Cartilage 17:284–290

    Article  CAS  Google Scholar 

  • Papageorgiou CD, Gil JE, Kanamori A, Fenwick JA, Woo SLY, Fu FH (2001) The biomechanical interdependence between the anterior cruciate ligament replacement graft and the medial meniscus. Am J Sports Med 29:226–231

    Article  CAS  Google Scholar 

  • Pflum MA, Shelburne KB, Torry MR, Decker MJ, Pandy MG (2004) Model prediction of anterior cruciate ligament force during drop-landings. Med Sci Sports Exerc 36:1949–1958

    Article  Google Scholar 

  • Pinczewski LA, Lyman J, Salmon LJ, Russell VJ, Roe J, Linklater J (2007) A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft – a controlled, prospective trial. Am J Sports Med 35:564–574

    Article  Google Scholar 

  • Ramsey DK, Wretenberg PF, Benoit DL, Lamontagne M, Nemeth G (2003) Methodological concerns using intra-cortical pins to measure tibiofemoral kinematics. Knee Surg Sports Traumatol Arthrosc 11:344–349

    Article  CAS  Google Scholar 

  • Rudy TW, Livesay GA, Woo SLY, Fu FH (1996) A combined robotic/universal force sensor approach to determine in situ forces of knee ligaments. J Biomech 29:1357–1360

    Article  CAS  Google Scholar 

  • Sasaki N, Farraro KF, Kim KE, Woo SL-Y (2014) Biomechanical evaluation of the quadriceps tendon autograft for anterior cruciate ligament reconstruction – a cadaveric study. Am J Sports Med 42(3):723–730

    Article  Google Scholar 

  • Shelbourne KD, Klootwyk TE, Wilckens JH, De Carlo MS (1995) Ligament stability two to six years after anterior cruciate ligament reconstruction with autogenous patellar tendon graft and participation in accelerated rehabilitation program. Am J Sports Med 23:575–579

    Article  CAS  Google Scholar 

  • Shelburne KB, Pandy MG, Anderson FC, Torry MR (2004) Pattern of anterior cruciate ligament force in normal walking. J Biomech 37:797–805

    Article  Google Scholar 

  • Shelburne KB, Torry MR, Pandy MG (2005) Effect of muscle compensation on knee instability during ACL-deficient gait. Med Sci Sports Exerc 37:642–648

    Article  Google Scholar 

  • Song Y, Debski RE, Musahl V, Thomas M, Woo SL-Y (2004) A three-dimensional finite element model of the human anterior cruciate ligament: a computational analysis with experimental validation. J Biomech 37:383–390

    Article  Google Scholar 

  • Takai S, Woo SLY, Livesay GA, Adams DJ, Fu FH (1993) Determination of the in-situ loads on the human anterior cruciate ligament. J Orthop Res 11:686–695

    Article  CAS  Google Scholar 

  • Torry MR, Myers C, Pennington WW, Shelburne KB, Krong JP, Giphart JE et al (2011a) Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study. Knee Surg Sports Traumatol Arthrosc 19:653–662

    Article  Google Scholar 

  • Torry MR, Myers C, Shelburne KB, Peterson D, Giphart JE, Pennington WW et al (2011b) Relationship of knee shear force and extensor moment on knee translations in females performing drop landings: a biplane fluoroscopy study. Clin Biomech (Bristol, Avon) 26:1019–1024

    Article  Google Scholar 

  • Torry MR, Shelburne KB, Myers C, Giphart JE, Pennington WW, Krong JP et al (2013) High knee valgus in female subjects does not yield higher knee translations during drop landings: a biplane fluoroscopic study. J Orthop Res 31:257–267

    Article  Google Scholar 

  • von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63:269–273

    Article  Google Scholar 

  • Woo SL-Y, Debski RE, Withrow JD, Janaushek MA (1999a) Biomechanics of knee ligaments. Am J Sports Med 27:533–543

    Article  CAS  Google Scholar 

  • Woo SL-Y, Debski RE, Wong EK, Yagi M, Tarinelli D (1999b) Use of robotic technology for diarthrodial joint research. J Sci Med Sport 2:283–297

    Article  CAS  Google Scholar 

  • You BM, Siy P, Anderst W, Tashman S (2001) In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging 20:514–525

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savio L.-Y. Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Woo, S.LY., Farraro, K.F., Flowers, J.R., Chen, C. (2015). Measuring In Vivo Joint Motion and Ligament Function: New Developments. In: Doral, M.N., Karlsson, J. (eds) Sports Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36569-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36569-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36568-3

  • Online ISBN: 978-3-642-36569-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics