Skip to main content
Log in

In Vivo and In Vitro Analysis of Rat Lumbar Spine Mechanics

  • Basic Research
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Rodent lumbar and caudal (tail) spine segments provide useful in vivo and in vitro models for human disc research. In vivo caudal models allow characterization of the effect of static and dynamic loads on disc mechanics of individual animals with time, but the lumbar models have required sacrifice of the animals for in vitro mechanical testing.

Questions/purposes

We therefore developed a novel displacement controlled in vivo lumbar spine noninvasive induced angular displacement (NIAD) test; data obtained with NIAD were used to compare angular displacement between segmental levels (L4/L5, L5/L6 and L6/S1), interobserver radiograph measurement agreement, and intraobserver radiograph measurement repeatability. Measurements from NIAD were compared with angular displacement, bending stiffness, and moment to failure measured by an in vitro test.

Methods

Anesthetized Lewis rats were xrayed in a 90° angled fixture, and NIAD was measured at lumbar levels L4 to S1 by two independent and blinded observers. After euthanasia, in vitro angular displacement (IVAD), stiffness, and failure moment were measured for the combined L4-L6 segment in four-point bending.

Results

NIAD was greater at L4/L5 and L5/L6 than at L6/S1. Combined coronal NIAD for L4-L6 was 42.8° ± 5.3° and for IVAD was 61.5° ± 3.8°. Reliability assessed by intraclass correlation coefficient (ICC) was 0.905 and 0.937 for intraobserver radiograph measurements, and interobserver ICCs ranged from 0.387 to 0.653 for individual levels. The interobserver ICC was 0.911 for combined data from all levels. Reliability for test-retest NIAD measurements had an ICC of 0.932. In vitro failure moment correlated with NIAD left bending.

Conclusions

The NIAD method yielded reproducible and reliable rat lumbar spine angular displacement measurements without required euthanasia, and allows repetitive monitoring of animals with time. For lumbar spine research studies performed during a course of time, the NIAD method may reduce animal numbers required by providing serial angular displacement measurements without euthanasia.

Clinical Relevance

Improved methods to assess comparative models for disease or aging may permit enhanced clinical treatments and improved patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–D
Fig. 3A−D

Similar content being viewed by others

References

  1. Alini M, Eisenstein SM, Ito K, Little C, Kettler AA, Masuda K, Melrose J, Ralphs J, Stokes I, Wilke HJ. Are animal models useful for studying human disc disorders/degeneration? Eur Spine J. 2008;17:2–19.

    Article  PubMed  Google Scholar 

  2. Beckstein JC, Sen S, Schaer TP, Vresilovic EJ, Elliott DM. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content. Spine (Phila Pa 1976). 2008;33:E166–173.

    Google Scholar 

  3. Bettini N, Girardo M, Dema E, Cervellati S. Evaluation of conservative treatment of non specific spondylodiscitis. Eur Spine J. 2009;18(suppl 1):143–150.

    Article  PubMed  Google Scholar 

  4. Boxberger JI, Auerbach JD, Sen S, Elliott DM. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine (Phila Pa 1976). 2008;33:146–154.

    Google Scholar 

  5. Boxberger JI, Orlansky AS, Sen S, Elliott DM. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. J Biomech. 2009;42:1941–1946.

    Article  PubMed  Google Scholar 

  6. Boxberger JI, Sen S, Yerramalli CS, Elliott DM. Nucleus pulposus glycosaminoglycan content is correlated with axial mechanics in rat lumbar motion segments. J Orthop Res. 2006;24:1906–1915.

    Article  CAS  PubMed  Google Scholar 

  7. Bramer JA, Barentsen RH, vd Elst M, de Lange ES, Patka P, Haarman HJ. Representative assessment of long bone shaft biomechanical properties: an optimized testing method. J Biomech. 1998;31:741–745.

    Article  CAS  PubMed  Google Scholar 

  8. Carman DL, Browne RH, Birch JG. Measurement of scoliosis and kyphosis radiographs: intraobserver and interobserver variation. J Bone Joint Surg Am. 1990;72:328–333.

    CAS  PubMed  Google Scholar 

  9. Cheung J, Wever DJ, Veldhuizen AG, Klein JP, Verdonck B, Nijlunsing R, Cool JC, Van Horn JR. The reliability of quantitative analysis on digital images of the scoliotic spine. Eur Spine J. 2002;11:535–542.

    Article  PubMed  Google Scholar 

  10. Cobb JR. Outline for the study of scoliosis. In: Thomson JEM, Boount WP, eds. The American Academy of Orthopaedic Surgeons. Instructional Course Lectures. Ann Arbor, MI: JW Edwards; 1948:5:261–275.

  11. Collantes E, Zarco P, Munoz E, Juanola X, Mulero J, Fernandez-Sueiro JL, Torre-Alonso JC, Gratacos J, Gonzalez C, Batlle E, Fernandez P, Linares LF, Brito E, Carmona L. Disease pattern of spondyloarthropathies in Spain: description of the first national registry (REGISPONSER) extended report. Rheumatology (Oxford). 2007;46:1309–1315.

    Article  CAS  Google Scholar 

  12. Cottrell JM, van der Meulen MC, Lane JM, Myers ER. Assessing the stiffness of spinal fusion in animal models. HSS J. 2006;2:12–18.

    Article  PubMed  Google Scholar 

  13. Elliott DM, Sarver JJ. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine (Phila Pa 1976) 2004;29:713–722.

    Google Scholar 

  14. Espinoza Orias AA, Malhotra NR, Elliott DM. Rat disc torsional mechanics: effect of lumbar and caudal levels and axial compression load. Spine J. 2009;9:204–209.

    Article  PubMed  Google Scholar 

  15. Fendler C, Braun J. Clinical measures in rheumatoid arthritis and ankylosing spondylitis. Clin Exp Rheumatol. 2009;27(4 suppl 55):S80–S82.

    CAS  PubMed  Google Scholar 

  16. Fernandez M, Carrol CL, Baker CJ. Discitis and vertebral osteomyelitis in children: an 18-year review. Pediatrics. 2000;105:1299–1304.

    Article  CAS  PubMed  Google Scholar 

  17. Goldberg MS, Poitras B, Mayo NE, Labelle H, Bourassa R, Cloutier R. Observer variation in assessing spinal curvature and skeletal development in adolescent idiopathic scoliosis. Spine. 1988;13:1371–1377.

    Article  CAS  PubMed  Google Scholar 

  18. Gruber HE, Gordon B, Williams C, Norton HJ, Hanley EN Jr. Vertebral endplate and disc changes in the aging sand rat lumbar spine: cross-sectional analyses of a large male and female population. Spine (Phila Pa 1976). 2007;32:2529–2536.

    Google Scholar 

  19. Hamzaoglu A, Talu U, Tezer M, Mirzanli C, Domanic U, Goksan SB. Assessment of curve flexibility in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2005;30:1637–1642.

    Google Scholar 

  20. Harrison DE, Betz JW, Cailliet R, Colloca CJ, Harrison DD, Haas JW, Janik TJ. Radiographic pseudoscoliosis in healthy male subjects following voluntary lateral translation (side glide) of the thoracic spine. Arch Phys Med Rehabil. 2006;87:117–122.

    Article  PubMed  Google Scholar 

  21. Hicks GE, Morone N, Weiner DK. Degenerative lumbar disc and facet disease in older adults: prevalence and clinical correlates. Spine (Phila Pa 1976). 2009;34:1301–1306.

    Google Scholar 

  22. Hsieh AH, Hwang D, Ryan DA, Freeman AK, Kim H. Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function. Spine (Phila Pa 1976). 2009;34:998–1005.

    Google Scholar 

  23. Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine (Phila Pa 1976). 1999;24:996–1002.

    CAS  Google Scholar 

  24. Jeffries BF, Tarlton M, De Smet AA, Dwyer SJ III, Brower AC. Computerized measurement and analysis of scoliosis: a more accurate representation of the shape of the curve. Radiology. 1980;134:381–385.

    CAS  PubMed  Google Scholar 

  25. Kuklo TR, Potter BK, O’Brien MF, Schroeder TM, Lenke LG, Polly DW Jr; Spinal Deformity Study Group. Reliability analysis for digital adolescent idiopathic scoliosis measurements. J Spinal Disord Tech. 2005;18:152–159.

    Article  PubMed  Google Scholar 

  26. Lee YP, Jo M, Luna M, Chien B, Lieberman JR, Wang JC. The efficacy of different commercially available demineralized bone matrix substances in an athymic rat model. J Spinal Disord Tech. 2005;18:439–444.

    Article  PubMed  Google Scholar 

  27. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine (Phila Pa 1976). 1998;23:2493–2506.

    CAS  Google Scholar 

  28. Maclean JJ, Lee CR, Alini M, Iatridis JC. Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression. J Orthop Res. 2004;22:1193–1200.

    Article  CAS  PubMed  Google Scholar 

  29. MacLean JJ, Lee CR, Grad S, Ito K, Alini M, Iatridis JC. Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine (Phila Pa 1976). 2003;28:973–981.

    Google Scholar 

  30. Masuoka K, Michalek AJ, MacLean JJ, Stokes IA, Iatridis JC. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro. Spine (Phila Pa 1976). 2007;32:1974–1979.

    Google Scholar 

  31. Mente PL, Aronsson DD, Stokes IA, Iatridis JC. Mechanical modulation of growth for the correction of vertebral wedge deformities. J Orthop Res. 1999;17:518–524.

    Article  CAS  PubMed  Google Scholar 

  32. Mente PL, Stokes IA, Spence H, Aronsson DD. Progression of vertebral wedging in an asymmetrically loaded rat tail model. Spine (Phila Pa 1976). 1997;22:1292–1296.

    CAS  Google Scholar 

  33. Onda A, Yabuki S, Kikuchi S. Effects of neutralizing antibodies to tumor necrosis factor-alpha on nucleus pulposus-induced abnormal nociresponses in rat dorsal horn neurons. Spine (Phila Pa 1976). 2003;28:967–972.

    Google Scholar 

  34. Peterson B, Whang PG, Iglesias R, Wang JC, Lieberman JR. Osteoinductivity of commercially available demineralized bone matrix: preparations in a spine fusion model. J Bone Joint Surg Am. 2004;86:2243–2250.

    PubMed  Google Scholar 

  35. Salminen JJ, Erkintalo MO, Pentti J, Oksanen A, Kormano MJ. Recurrent low back pain and early disc degeneration in the young. Spine (Phila Pa 1976). 1999;24:1316–1321.

    CAS  Google Scholar 

  36. Stokes IA, McBride CA, Aronsson DD. Intervertebral disc changes in an animal model representing altered mechanics in scoliosis. Stud Health Technol Inform. 2008;140:273–277.

    CAS  PubMed  Google Scholar 

  37. Sugiura A, Ohtori S, Yamashita M, Inoue G, Yamauchi K, Koshi T, Suzuki M, Norimoto M, Orita S, Eguchi Y, Takahashi Y, Watanabe TS, Ochiai N, Takaso M, Takahashi K. Existence of nerve growth factor receptors, tyrosine kinase a and p75 neurotrophin receptors in intervertebral discs and on dorsal root ganglion neurons innervating intervertebral discs in rats. Spine (Phila Pa 1976). 2008;33:2047–2051.

    Google Scholar 

  38. Uei H, Matsuzaki H, Oda H, Nakajima S, Tokuhashi Y, Esumi M. Gene expression changes in an early stage of intervertebral disc degeneration induced by passive cigarette smoking. Spine (Phila Pa 1976). 2006;31:510–514.

    Google Scholar 

  39. Vaughan JJ, Winter RB, Lonstein JE. Comparison of the use of supine bending and traction radiographs in the selection of the fusion area in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 1996;21:2469–2473.

    CAS  Google Scholar 

  40. Wood KB, Olsewski JM, Schendel MJ, Boachie-Adjei O, Gupta M. Rotational changes of the vertebral pelvic axis after sublaminar instrumentation in adolescent idiopathic scoliosis. Spine. 1997;22:51–57.

    Article  CAS  PubMed  Google Scholar 

  41. Wood KB, Transfeldt EE, Ogilvie JW, Schendel MJ, Bradford DS. Rotational changes of the vertebral-pelvic axis following Cotrel-Dubousset instrumentation. Spine. 1991;16(8 suppl):S404–S408.

    CAS  PubMed  Google Scholar 

  42. Wuertz K, Godburn K, MacLean JJ, Barbir A, Donnelly JS, Roughley PJ, Alini M, Iatridis JC. In vivo remodeling of intervertebral discs in response to short- and long-term dynamic compression. J Orthop Res. 2009;27:1235–1242.

    Article  PubMed  Google Scholar 

  43. Zhang KB, Zheng ZM, Liu H, Liu XG. The effects of punctured nucleus pulposus on lumbar radicular pain in rats: a behavioral and immunohistochemical study. J Neurosurg Spine. 2009;11:492–500.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Thomas Lawhorne for assistance with data collection and Dr. Bernard A. Rawlins for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Cunningham MD, PhD.

Additional information

One or more of the authors has received funding from: Arthritis Foundation New York Chapter (MEC), Cobb Scoliosis Research Fund (OBA), North American Spine Society (MEC), and Musculoskeletal Repair and Regeneration Core Center NIH P30-AR46121 (MvdM and MEC).

Each author certifies that his or her institution has approved the animal protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

About this article

Cite this article

Cunningham, M.E., Beach, J.M., Bilgic, S. et al. In Vivo and In Vitro Analysis of Rat Lumbar Spine Mechanics. Clin Orthop Relat Res 468, 2695–2703 (2010). https://doi.org/10.1007/s11999-010-1421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-010-1421-6

Keywords

Navigation