Skip to main content
Log in

Sequential Changes of Bone Metabolism in Normal and Delayed Union of the Spine

  • Original Article
  • Spine
  • Published:
Clinical Orthopaedics and Related Research

Abstract

Time-dependent changes in bone markers in delayed or nonunion of vertebral fracture were compared with those of normal union. Thirty-three patients with a fresh vertebral fracture were enrolled. Urinary Type I collagen C-terminal telopeptide, pyridinoline, deoxypyridinoline, serum C-terminal telopeptide, and N-midportion of osteocalcin (OCN-mid) were determined at the time of hospital admission (within 24 hours after the fracture event in all cases) and at 2, 4, 12, 24, and 48 weeks thereafter. Subjects were divided into two groups according to the results of MR images taken 48 weeks after fracture. Twenty-four were normally united (Group N) and nine had delayed or nonunion (Group D) of the spine. No differences between values of bone resorption markers in Group N and Group D were observed at any time. Serum OCN-mid in Group N started to increase at 2 weeks and reached the peak value at 24 weeks (180%); however, serum OCN-mid in Group D increased at most 120% from baseline to 4 weeks. Values of serum OCN-mid in Group N were higher at 24 and 48 weeks than those in Group D. Impairment of fracture healing was strongly associated with a deficit in the increase of osteocalcin in the later stage of fracture repair.

Level of Evidence: Level II, prognostic study. See the Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–B
Fig. 2A–B
Fig. 3
Fig. 4A–C
Fig. 5A–B
Fig. 6A–B
Fig. 7
Fig. 8A–B
Fig. 9A–B

Similar content being viewed by others

References

  1. Akedo Y, Hosoi T, Inoue S, Ikegami A, Mizuno Y, Kaneki M, Nakamura T, Ouchi Y, Orimo H. Vitamin K2 modulates proliferation and function of osteoblastic cells in vitro. Biochem Biophys Res Commun. 1992;187:814–820.

    Article  PubMed  CAS  Google Scholar 

  2. Akesson K, Käkönen SM, Josefsson PO, Karlsson MK, Obrant KJ, Pettersson K. Fracture-induced changes in bone turnover: a potential confounder in the use of biochemical markers in osteoporosis. J Bone Miner Metab. 2005;23:30–35.

    Article  PubMed  CAS  Google Scholar 

  3. Baur A, Stäbler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology. 2002;225:730–735.

    Article  PubMed  Google Scholar 

  4. Bonde M, Garnero P, Fledelius C, Qvist P, Delmas PD, Christiansen C. Measurement of bone degradation products in serum using antibodies reactive with an isomerized form of an 8 amino acid sequence of the C-telopeptide of type I collagen. J Bone Miner Res. 1997;12:1028–1034.

    Article  PubMed  CAS  Google Scholar 

  5. Bonde M, Qvist P, Fledelius C, Riis BJ, Christiansen C. Immunoassay for quantifying type I collagen degradation products in urine evaluated. Clin Chem. 1994;40(11 Pt 1):2022–2025.

    PubMed  CAS  Google Scholar 

  6. Chalidis B, Tzioupis C, Tsiridis E, Giannoudis PV. Enhancement of fracture healing with parathyroid hormone: preclinical studies and potential clinical applications. Expert Opin Investig Drugs. 2007;16:441–449.

    Article  PubMed  CAS  Google Scholar 

  7. Chow YW, Inman C, Pollintine P, Sharp CA, Haddaway MJ, el Masry W, Davie MW. Ultrasound bone densitometry and dual energy x-ray absorptiometry in patients with spinal cord injury: a cross-sectional study. Spinal Cord. 1996;34:736–741.

    PubMed  CAS  Google Scholar 

  8. Emami A, Larsson A, Petrén-Mallmin M, Larsson S. Serum bone markers after intramedullary fixed tibial fractures. Clin Orthop Relat Res. 1999;368:220–229.

    Article  PubMed  Google Scholar 

  9. Genant HK, Wu CY, Van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8:1137–1148.

    PubMed  CAS  Google Scholar 

  10. Hasegawa K, Homma T, Takahashi HE. Osteosynthesis without instrumentation for vertebral pseudarthrosis in the osteoporotic spine. J Bone Joint Surg Br. 1997;79:452–456.

    Article  PubMed  CAS  Google Scholar 

  11. Hedström M, Sjöberg K, Svensson J, Brosjö E, Dalén N. Changes in biochemical markers of bone metabolism and BMD during the first year after a hip fracture. Acta Orthop Scand. 2001;72:248–251.

    Article  PubMed  Google Scholar 

  12. Hoesel LM, Wehr U, Rambeck WA, Schnettler R, Heiss C. Biochemical bone markers are useful to monitor fracture repair. Clin Orthop Relat Res. 2005;440:226–232.

    Article  PubMed  CAS  Google Scholar 

  13. Ingle BM, Hay SM, Bottjer HM, Eastell R. Changes in bone mass and bone turnover following ankle fracture. Osteoporos Int. 1999;10:408–415.

    Article  PubMed  CAS  Google Scholar 

  14. Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ. Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res. 2007;22:1155–1164.

    Article  PubMed  CAS  Google Scholar 

  15. Joerring S, Krogsgaard M, Wilbek H, Jensen LT. Collagen turnover after tibial fractures. Arch Orthop Trauma Surg. 1994;113:334–336.

    Article  PubMed  CAS  Google Scholar 

  16. Kurdy NM. Serology of abnormal fracture healing: the role of PIIINP, PICP, and BsALP. J Orthop Trauma. 2000;14:48–53.

    Article  PubMed  CAS  Google Scholar 

  17. Lueken SA, Arnaud SB, Taylor AK, Baylink DJ. Changes in markers of bone formation and resorption in a bed rest model of weightlessness. J Bone Miner Res. 1993;8:1433–1438.

    Article  PubMed  CAS  Google Scholar 

  18. McKiernan F, Faciszewski T. Intravertebral clefts in osteoporotic vertebral compression fractures. Arthritis Rheum. 2003;48:1414–1419.

    Article  PubMed  Google Scholar 

  19. Nyman MT, Paavolainen P, Forsius S, Lamberg-Allardt C. Clinical evaluation of fracture healing by serum osteocalcin and alkaline phosphatase. Ann Chir Gynaecol. 1991;80:289–293.

    PubMed  CAS  Google Scholar 

  20. Obrant KJ, Merle B, Bejui J, Delmas PD. Serum bone-gla protein after fracture. Clin Orthop Relat Res. 1990;258:300–303.

    PubMed  Google Scholar 

  21. Ohishi T, Takahashi M, Kushida K, Hoshino H, Tsuchikawa T, Naitoh K, Inoue T. Changes of biochemical markers during fracture healing. Arch Orthop Trauma Surg. 1998;118:126–130.

    Article  PubMed  CAS  Google Scholar 

  22. Oni OO, Mahabir JP, Iqbal SJ, Gregg PJ. Serum osteocalcin and total alkaline phosphatase levels as prognostic indicators in tibial shaft fractures. Injury. 1989;20:37–38.

    Article  PubMed  CAS  Google Scholar 

  23. Pratt DA, Daniloff Y, Duncan A, Robins SP. Automated analysis of the pyridinium crosslinks of collagen in tissue and urine using solid-phase extraction and reversed-phase high-performance liquid chromatography. Anal Biochem. 1992;207:163–175.

    Article  Google Scholar 

  24. Rosenquist C, Qvist P, Bjarnason N, Christiansen C. Measurement of a more stable region of osteocalcin in serum by ELISA with two monoclonal antibodies. Clin Chem. 1995;41:1439–1445.

    PubMed  CAS  Google Scholar 

  25. Shih TT, Tsuang YH, Huang KM, Chen PQ, Su CT. Magnetic resonance imaging of vertebral compression fractures. J Formos Med Assoc. 1996;95:313–319.

    PubMed  CAS  Google Scholar 

  26. Stoffel K, Engler H, Kuster M, Riesen W. Changes in biochemical markers after lower limb fractures. Clin Chem. 2007;53:131–134.

    Article  PubMed  CAS  Google Scholar 

  27. Sugiyama K, Yamasaki K, Kitagaki H, Tanaka Y, Kono M. Bone marrow disease of the spine: differentiation with T1 and T2 relaxation times in MR imaging. Radiology. 1987;165:541–544.

    Google Scholar 

  28. Sung MS, Park SH, Lee JM, Jung HJ, Yim JI, Kim YS, Shinn KS. Sequential changes of traumatic vertebral compression fracture on MR imaging. J Korean Med Sci. 1995;10:189–194.

    PubMed  CAS  Google Scholar 

  29. Thomas T. Intermittent parathyroid hormone therapy to increase bone formation. Joint Bone Spine. 2006;73:262–269.

    Article  PubMed  CAS  Google Scholar 

  30. Van der Poest Clement E, Van Engeland M, Adèr H, Roos JC, Patka O, Lips P. Alendronate in the prevention of bone loss after a fracture of the lower leg. J Bone Miner Res. 2002;17:2247–2255.

    Article  PubMed  Google Scholar 

  31. Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zäch G, Lippuner K. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15:180–189.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Takuya Tsuchikawa, Mitsuke Clinic, Iwata, Japan, and Ryuichi Miyamoto for sampling the data of the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Ohishi MD, PhD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

Each author certifies that his or her institution either has waived or does not require approval for the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

About this article

Cite this article

Ohishi, T., Takahashi, M., Yamanashi, A. et al. Sequential Changes of Bone Metabolism in Normal and Delayed Union of the Spine. Clin Orthop Relat Res 466, 402–410 (2008). https://doi.org/10.1007/s11999-007-0054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-007-0054-x

Keywords

Navigation