Skip to main content
Log in

Advance of design and application in self-healing anticorrosive coating: a review

  • Review Article
  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

As a significant method to inhibit metal corrosion by blocking the diffusion of corrosive mediums to the metal surface, the anticorrosion coating with a self-healing function can actively repair a damaged structure and improve the anticorrosion performance to better meet actual needs. In this study, “external aid” and “intrinsic triggering” self-healing coatings have been introduced in detail, including the preparation method, healing mechanism and practical applications. The healing of “external aid” is based on the addition components such as microcapsules containing healing agents and functional nanoparticles, whose ability of self-healing shows the independence with the coating resin. But the finitely additive amount may limit the sustainable use of “external aid” components, and the abundant fillers also change the basic physical properties of the coating. On the contrary, the “intrinsic triggering” resins can form the cover layer in the defects owing to the physical or chemical reactions between the polymer chains, along with the unlimited cycles theoretically. By contrast, the small defects or gaps can be repaired gradually through chain reactions, but the large areas of damage may need the quick release of healing additives in “external aid” coating. In this review, the advances of two kinds of self-healing coatings were analyzed to discuss the advantages and disadvantages of various healing technologies, and the challenges of development and prospects were also forecasted to provide useful ideas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Sabel, CF, Victor, DG, “Governing Global Problems Under Uncertainty: Making Bottom-up Climate Policy Work.” Clim. Change, 144 (1) 15 (2015)

    Article  Google Scholar 

  2. Husain, E, et al. “Marine Corrosion Protective Coatings of Hexagonal Boron Nitride Thin Films on Stainless Steel.” ACS Appl. Mater. Interfaces, 5 (10) 4129–4135 (2013)

    Article  CAS  Google Scholar 

  3. Dutta, D, et al. “Revisiting Graphene-Polymer Nanocomposite for Enhancing Anticorrosion Performance: A New Insight into Interface Chemistry and Diffusion Model.” Nanoscale, 10 (26) 12612–12614 (2018)

    Article  CAS  Google Scholar 

  4. Sarkar, N, et al. “Anticorrosion Performance of Three-Dimensional Hierarchical PANI@BN Nanohybrids.” Ind. Eng. Chem. Res., 55 (11) 2921–2931 (2016)

    Article  CAS  Google Scholar 

  5. Izadi, M, Shahrabi, T, Ramezanzadeh, B, “Active Corrosion Protection Performance of an Epoxy Coating Applied on the Mild Steel Modified with an Eco-Friendly Sol-Gel Film Impregnated with Green Corrosion Inhibitor Loaded Nanocontainers.” Appl. Surf. Sci., 440 491–505 (2018)

    Article  CAS  Google Scholar 

  6. Sanaei, Z, Bahlakeh, G, Ramezanzadeh, B, “Active Corrosion Protection of Mild Steel by an Epoxy Ester Coating Reinforced with Hybrid Organic/Inorganic Green Inhibitive Pigment.” J. Alloys Compd., 728 1289–1304 (2017)

    Article  CAS  Google Scholar 

  7. Cai, G, Wang, H, Jiang, D, Dong, Z, “Degradation of Fluorinated Polyurethane Coating Under UVA and Salt Spray. Part I: Corrosion Resistance and Morphology.” Prog. Org. Coat., 123 337–349 (2018)

    Article  CAS  Google Scholar 

  8. Wei, X, et al. “Bio-Based Self-Healing Coating Material Derived from Renewable Castor Oil and Multifunctional Alamine.” Eur. Polym. J., 160 110804 (2021)

    Article  CAS  Google Scholar 

  9. Mehta, NK, Bogere, MN, “Environmental Studies of Smart/Self-Healing Coating System for Steel.” Prog. Org. Coat., 64 (4) 419–428 (2009)

    Article  CAS  Google Scholar 

  10. Bekas, DG, Tsirka, K, Baltzis, D, Paipetis, AS, “Self-Healing Materials: A Review of Advances in Materials, Evaluation, Characterization and Monitoring Techniques.” Compos. B Eng., 87 92–119 (2016)

    Article  CAS  Google Scholar 

  11. Hager, MD, Greil, P, Leyens, C, van der Zwaag, S, Schubert, US, “Self-Healing Materials.” Adv. Mater., 22 (47) 5424–5430 (2010)

    Article  CAS  Google Scholar 

  12. Chakma, P, Konkolewicz, D, “Dynamic Covalent Bonds in Polymeric Materials.” Angew. Chem. Int. Ed. Engl., 58 (29) 9784–9797 (2019)

    Article  Google Scholar 

  13. Ataei, S, Khorasani, SN, Neisiany, RE, “Biofriendly Vegetable Oil Healing Agents Used for Developing Self-Healing Coatings: A Review.” Prog. Org. Coat., 129 77–95 (2019)

    Article  CAS  Google Scholar 

  14. White, SR, et al. “Autonomic Healing of Polymer Composites.” Nature, 409 (6822) 794–797 (2001)

    Article  CAS  Google Scholar 

  15. Guo, M, Li, W, Han, N, Wang, J, Su, J, Li, J, Zhang, X, “Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-Corrosion Coating.” Polymers, 10 (3) 319 (2018)

    Article  Google Scholar 

  16. Zheng, N, Liu, J, Li, W, “TO/TMMP-TMTGE Double-Healing Composite Containing a Transesterification Reversible Matrix and Tung Oil-Loaded Microcapsules for Active Self-Healing.” Polymers, 11 (7) 1127 (2019)

    Article  Google Scholar 

  17. Sun, D, Chong, YB, Chen, K, Yang, J, “Chemically and Thermally Stable Isocyanate Microcapsules Having Good Self-Healing and Self-Lubricating Performances.” Chem. Eng. J., 346 289–297 (2018)

    Article  CAS  Google Scholar 

  18. He, Z, et al. “Self-Healing Isocyanate Microcapsules for Efficient Restoration of Fracture Damage of Polyurethane and Epoxy Resins.” J. Mater. Sci., 54 (11) 8262–8257 (2019)

    Article  CAS  Google Scholar 

  19. Fang, Y, et al. “Thermal-and Mechanical-Responsive Polyurethane Elastomers with Self-Healing, Mechanical-Reinforced, and Thermal-Stable Capabilities.” Polymer, 158 166–175 (2018)

    Article  CAS  Google Scholar 

  20. Sargolzaeiaval, Y, et al. “High Thermal Conductivity Silicone Elastomer Doped with Graphene Nanoplatelets and Eutectic Gain Liquid Metal Alloy.” ECS J. Solid State. SC, 8 (6) 357–362 (2019)

    Google Scholar 

  21. Li, H, Cui, Y, Wang, H, Zhu, Y, Wang, B, “Preparation and Application of Polysulfone Microcapsules Containing Tung Oil in Self-Healing and Self-Lubricating Epoxy Coating.” Colloids Surf. A, 518 181–187 (2017)

    Article  CAS  Google Scholar 

  22. Suryanarayana, C, Rao, KC, Kumar, D, “Preparation and Characterization of Microcapsules Containing Linseed Oil and Its Use in Self-Healing Coatings.” Prog. Org. Coat., 63 (1) 72–78 (2008)

    Article  CAS  Google Scholar 

  23. Li, J, et al. “Encapsulation of Linseed Oil in Graphene Oxide Shells for Preparation of Self-Healing Composite Coatings.” Prog. Org. Coat., 129 285–291 (2019)

    Article  CAS  Google Scholar 

  24. Huang, M, Yang, J, “Facile Microencapsulation of HDI for Self-Healing Anticorrosion Coatings.” J. Mater. Chem. A, 21 11123–11130 (2011)

    Article  CAS  Google Scholar 

  25. Mahmoodi, NM, Taghizadeh, M, Taghizadeh, A, “Ultrasound-Assisted Green Synthesis and Application of Recyclable Nanoporous Chromium-Based Metal-Organic Framework.” Korean J. Chem. Eng., 36 (2) 287–298 (2018)

    Article  Google Scholar 

  26. Wang, H, Zhou, Q, “Evaluation and Failure Analysis of Linseed Oil Encapsulated Self-Healing Anticorrosive Coating.” Prog. Org. Coat., 118 108–115 (2018)

    Article  CAS  Google Scholar 

  27. Cho, SH, White, SR, Braun, PV, “Self-Healing Polymer Coatings.” Adv. Mater., 21 (6) 645–649 (2009)

    Article  CAS  Google Scholar 

  28. Cho, SH, White, SR, Braun, PV, “Room-Temperature Polydimethylsiloxane-Based Self-Healing Polymers.” Chem. Mater., 24 (21) 4209–4214 (2012)

    Article  CAS  Google Scholar 

  29. Cho, SH, Andersson, HM, White, SR, Sottos, NR, Braun, PV, “Polydimethylsiloxane-Based Self-Healing Materials.” Adv. Mater., 18 (8) 997–1000 (2006)

    Article  CAS  Google Scholar 

  30. Hedaoo, RK, Mahulikar, PP, Gite, VV, “Synthesis and Characterization of Resorcinol-Based Cross Linked Phenol Formaldehyde Microcapsules for Encapsulation of Pendimethalin.” Polym. Plast. Technol. Eng., 52 (3) 243–249 (2013)

    Article  CAS  Google Scholar 

  31. Qiao, L, Xue, Y, Zhang, Q, “Synthesis and Characterization of Phenol-Formaldehyde Microcapsules for Self-Healing Coatings.” J. Mater. Sci., 53 (2) 1035–1048 (2017)

    Article  Google Scholar 

  32. Hillewaere, XKD, Du Prez, FE, “Fifteen Chemistries for Autonomous External Self-Healing Polymers and Composites.” Prog. Polym. Sci., 49–50 121–153 (2015)

    Article  Google Scholar 

  33. de la Paz Miguel, M, Vallo, CI, “Influence of the Emulsifying System to Obtain Linseed Oil-Filled Microcapsules with a Robust Poly(Melamine-Formaldehyde)-Based Shell.” Prog. Org. Coat., 129 236 (2019)

    Article  Google Scholar 

  34. Chaudhari, AB, Tatiya, PD, Hedaoo, RK, Kulkarni, RD, Gite, VV, “Polyurethane Prepared from Neem Oil Polyesteramides for Self-Healing Anticorrosive Coatings.” Ind. Eng. Chem. Res., 52 (30) 10189 (2013)

    Article  CAS  Google Scholar 

  35. Marathe, RJ, et al. “Urea Formaldehyde (UF) Microcapsules Loaded with Corrosion Inhibitor for Enhancing the Anti-Corrosive Properties of Acrylic-Based Multi-Functional PU Coatings.” RSC Adv., 5 (20) 15539 (2015)

    Article  CAS  Google Scholar 

  36. Mahajan, MS, Gite, VV, “Self-Healing Polyurethane Coatings of Eugenol-Based Polyol Incorporated with Linseed Oil Encapsulated Cardanol-Formaldehyde Microcapsules: A Sustainable Approach.” Prog. Org. Coat., 162 106534 (2022)

    Article  CAS  Google Scholar 

  37. Zhu, DY, Rong, MZ, Zhang, MQ, “Self-Healing Polymeric Materials Based on Microencapsulated Healing Agents: From Design to Preparation.” Prog. Polym. Sci., 49–50 175–220 (2015)

    Article  Google Scholar 

  38. Rodríguez, J, Martín, MJ, Ruiz, MA, Clares, B, “Current Encapsulation Strategies for Bioactive Oils: From Alimentary to Pharmaceutical Perspectives.” Food Res. Int., 83 41–59 (2016)

    Article  Google Scholar 

  39. Samadzadeh, M, Boura, SH, Peikari, M, Kasiriha, SM, Ashrafi, A, “A Review on Self-Healing Coatings Based on Micro/Nanocapsules.” Prog. Org. Coat., 68 (3) 159–164 (2010)

    Article  CAS  Google Scholar 

  40. Shulkin, A, Stöver, HD, “Polymer Microcapsules by Interfacial Polyaddition Between Styrene–Maleic Anhydride Copolymers and Amines.” J. Membr. Sci., 209 (2) 421–432 (2002)

    Article  CAS  Google Scholar 

  41. Li, J, Hitchcock, AP, Stover, HD, “Pickering Emulsion Templated Interfacial Atom Transfer Radical Polymerization for Microencapsulation.” Langmuir, 26 (23) 17926 (2010)

    Article  CAS  Google Scholar 

  42. Crespy, D, Landfester, K, “Miniemulsion Polymerization as a Versatile Tool for the Synthesis of Functionalized Polymers.” Beilstein J. Org. Chem., 6 1132–1148 (2010)

    Article  CAS  Google Scholar 

  43. Freitas, S, Merkle, HP, Gander, B, “Microencapsulation by Solvent Extraction/Evaporation: Reviewing the State of the Art of Microsphere Preparation Process Technology.” J. Control. Release, 102 313–332 (2005)

    Article  CAS  Google Scholar 

  44. Moore, DG, Brignoli, JVA, Ruhs, PA, Studart, AR, “Functional Microcapsules with Hybrid Shells Made via Sol-Gel Reaction within Double Emulsions.” Langmuir, 33 (36) 9007–9017 (2017)

    Article  CAS  Google Scholar 

  45. Huang, M, Yang, J, “Salt Spray and EIS Studies on HDI Microcapsule-Based Self-Healing Anticorrosive Coatings.” Prog. Org. Coat., 77 (1) 168 (2014)

    Article  CAS  Google Scholar 

  46. Dry, C, “Matrix Cracking Repair and Filling Using Active and Passive Modes for Smart Timed Release of Chemicals from Fibers into Cement Matrices.” Smart Mater. Struct., 3 118–123 (1994)

    Article  CAS  Google Scholar 

  47. Hamilton, AR, Sottos, NR, White, SR, “Pressurized Vascular Systems for Self-Healing Materials.” J. R. Soc. Interface, 9 (70) 1020–1028 (2012)

    Article  CAS  Google Scholar 

  48. Blaiszik, BJ, et al. “Self-Healing Polymers and Composites.” Annu. Rev. Mater. Sci., 40 (1) 179–211 (2010)

    Article  CAS  Google Scholar 

  49. Hansen, CJ, et al. “Self-Healing Materials with Interpenetrating Microvascular Networks.” Adv. Mater., 21 (41) 4143–4147 (2009)

    Article  CAS  Google Scholar 

  50. Patrick, JF, et al. “Continuous Self-Healing Life Cycle in Vascularized Structural Composites.” Adv. Mater., 26 (25) 4302–4308 (2014)

    Article  CAS  Google Scholar 

  51. Shields, Y, De Belie, N, Jefferson, A, Van Tittelboom, K, “A Review of Vascular Networks for Self-Healing Applications.” Smart Mater. Struct., 30 063001 (2021)

    Article  CAS  Google Scholar 

  52. Toohey, KS, Sottos, NR, White, SR, “Characterization of Microvascular-Based Self-Healing Coatings.” Exp. Mech., 49 581–585 (2008)

    Google Scholar 

  53. Therriault, D, White, SR, Lewis, JA, “Chaotic Mixing in Three-Dimensional Microvascular Networks Fabricated by Direct-Write Assembly.” Nat. Mater., 2 265–347 (2003)

    Article  CAS  Google Scholar 

  54. Hao, Y, Liu, F, Han, E-H, “Protection of Epoxy Coatings Containing Polyaniline Modified Ultra-Short Glass Fibers.” Prog. Org. Coat., 76 571–580 (2013)

    Article  CAS  Google Scholar 

  55. Pang, JWC, Bond, IP, “A Hollow Fibre Reinforced Polymer Composite Encompassing Self-Healing and Enhanced Damage Visibility.” Compos. Sci. Technol., 65 1791–1799 (2005)

    Article  CAS  Google Scholar 

  56. Jouyandeh, M, et al. “Highly Curable Self-Healing Vitrimer-Like Cellulose-Modified Halloysite Nanotube/Epoxy Nanocomposite Coatings.” Chem. Eng. J., 396 125196 (2020)

    Article  CAS  Google Scholar 

  57. Lee, MW, An, S, Kim, YI, Yoon, SS, Yarin, AL, “Self-Healing Three-Dimensional Bulk Materials Based on Core-Shell Nanofibers.” Chem. Eng. J., 334 1093–1100 (2018)

    Article  CAS  Google Scholar 

  58. Sinha-Ray, S, et al. “Encapsulation of Self-Healing Materials by Coelectrospinning, Emulsion Electrospinning, Solution Blowing and Intercalation.” J. Mater. Chem. A, 22 (18) 9138–9146 (2012)

    Article  CAS  Google Scholar 

  59. Shi, L, Zhuang, X, Tao, X, Cheng, B, Kang, W, “Solution Blowing Nylon 6 Nanofiber Mats for Air Filtration.” Fibers Polym., 14 (9) 1485–1490 (2013)

    Article  CAS  Google Scholar 

  60. Yarin, AL, Koombhongse, S, Reneker, DH, “Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers.” J. Appl. Phys., 90 (9) 4836 (2001)

    Article  CAS  Google Scholar 

  61. Bhardwaj, N, Kundu, SC, “Electrospinning: A Fascinating Fiber Fabrication Technique.” Biotechnol. Adv., 28 (3) 325–347 (2010)

    Article  CAS  Google Scholar 

  62. Haider, A, Haider, S, Kang, I-K, “A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology.” Arab. J. Chem., 11 (8) 1165–1188 (2018)

    Article  CAS  Google Scholar 

  63. Lee, MW, Yoon, SS, Yarin, AL, “Solution-Blown Core-Shell Self-Healing Nano- and Microfibers.” ACS Appl. Mater. Interfaces, 8 (7) 4955–4962 (2016)

    Article  CAS  Google Scholar 

  64. Park, JH, Braun, PV, “Coaxial Electrospinning of Self-Healing Coatings.” Adv. Mater., 22 (4) 496–499 (2010)

    Article  CAS  Google Scholar 

  65. Wu, XF, et al. “Electrospinning Core-Shell Nanofibers for Interfacial Toughening and Self-Healing of Carbon-Fiber/Epoxy Composites.” J. Appl. Polym. Sci., 129 (3) 1383–1393 (2013)

    Article  CAS  Google Scholar 

  66. Neisiany, RE, Khorasani, SN, Lee, JKY, Ramakrishna, S, “Encapsulation of Epoxy and Amine Curing Agent in Pan Nanofibers by Coaxial Electrospinning for Self-Healing Purposes.” RSC Adv., 6 (74) 70056–70063 (2016)

    Article  CAS  Google Scholar 

  67. Lee, MW, An, S, Jo, HS, Yoon, SS, Yarin, AL, “Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties.” ACS Appl. Mater. Interfaces, 7 (35) 19546–19554 (2015)

    Article  CAS  Google Scholar 

  68. Mitchell, TJ, Keller, MW, “Coaxial Electrospun Encapsulation of Epoxy for Use in Self-Healing Materials.” Polym. Int., 62 (6) 860–866 (2013)

    Article  CAS  Google Scholar 

  69. Neisiany, RE, Lee, JKY, Khorasani, SN, Ramakrishna, S, “Towards the Development of Self-Healing Carbon/Epoxy Composites with Improved Potential Provided by Efficient Encapsulation of Healing Agents in Core-Shell Nanofibers.” Polym. Test., 62 79–87 (2017)

    Article  CAS  Google Scholar 

  70. Cao, L, Wang, Q, Wang, W, Li, Q, Chen, S, “Synthesis of Smart Nanofiber Coatings with Autonomous Selfwarning and Self-Healing Functions.” ACS Appl. Mater. Inter., 14 (23) 27168–27176 (2022)

    Article  CAS  Google Scholar 

  71. Moghe, AK, Gupta, BS, “Co-Axial Electrospinning for Nanofiber Structures: Preparation and Applications.” Polym. Rev., 48 (2) 353–377 (2008)

    Article  CAS  Google Scholar 

  72. Xu, S, Li, J, Qiu, H, Xue, Y, Yang, J, “Repeated Self-Healing of Composite Coatings with Core-Shell Fibres.” Compos. Commun., 19 220–225 (2020)

    Article  Google Scholar 

  73. Song, L, Shi, H, Han, P, Ji, X, Cheng, Q, “Synthesis and Characterisation of an Iron-Ion-Responsive Coating with Core-Shell Electrospun Fibres Containing a Chelation Agent.” Mater. Corros., 73 (2) 242–253 (2021)

    Article  Google Scholar 

  74. Sheng, X, Cai, W, Zhong, L, Xie, D, Zhang, X, “Synthesis of Functionalized Graphene/Polyaniline Nanocomposites with Effective Synergistic Reinforcement on Anticorrosion.” Ind. Eng. Chem. Res., 55 (31) 8576–8585 (2016)

    Article  CAS  Google Scholar 

  75. Torrico, R, et al. “Structure and Properties of Epoxy-Siloxane-Silica Nanocomposite Coatings for Corrosion Protection.” J. Colloid. Interface Sci., 513 617–628 (2018)

    Article  CAS  Google Scholar 

  76. Zhao, D, et al. “A Waterborne Coating for Robust Superamphiphobic Surfaces.” Prog. Org. Coat., 138 105368 (2020)

    Article  CAS  Google Scholar 

  77. Deng, F, et al. “Effect of Nanosilica Content on the Corrosion Inhibition of Composite Coatings of a Filled Epoxy Resin Grafted with a Hydrophobic Fluoroalkylsilane: A Dual Critical Concentrations Interpretation.” RSC Adv., 7 (77) 48876–48893 (2017)

    Article  CAS  Google Scholar 

  78. Lee, JY, Buxton, GA, Balazs, AC, “Using Nanoparticles to Create Self-Healing Composites.” J. Chem. Phys., 121 (11) 5531–5540 (2004)

    Article  CAS  Google Scholar 

  79. Khelifa, F, Habibi, Y, Bonnaud, L, Dubois, P, “Epoxy Monomers Cured by High Cellulosic Nanocrystal Loading.” ACS Appl. Mater. Interfaces, 8 (16) 10535–10544 (2016)

    Article  CAS  Google Scholar 

  80. Grigoriev, D, Shchukina, E, Shchukin, DG, “Nanocontainers for Self-Healing Coatings.” Adv. Mater. Interfaces, 4 1600318 (2017)

    Article  Google Scholar 

  81. Hou, Y, et al. “Superior Hard but Quickly Reversible Si-O-Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings.” J. Am. Chem. Soc., 144 (1) 436–445 (2022)

    Article  CAS  Google Scholar 

  82. Rezvani Ghomi, E, et al. “Development of an Epoxy Self-Healing Coating Through the Incorporation of Acrylic Acid-Co-Acrylamide Copolymeric Gel.” Prog. Org. Coat., 149 105948 (2020)

    Article  CAS  Google Scholar 

  83. Atta, AM, El-Azabawy, OE, Ismail, HS, Hegazy, MA, “Novel Dispersed Magnetite Core-Shell Nanogel Polymers as Corrosion Inhibitors for Carbon Steel in Acidic Medium.” Corros. Sci., 53 (5) 1680–1689 (2011)

    Article  CAS  Google Scholar 

  84. Atta, AM, El-Mahdy, GA, Al-Lohedan, HA, Al-Hussain, SA, “Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel.” Int. J. Mol. Sci., 15 (4) 6974–6789 (2014)

    Article  Google Scholar 

  85. Radhakrishnan, S, Sonawane, N, Siju, CR, “Epoxy Powder Coatings Containing Polyaniline for Enhanced Corrosion Protection.” Prog. Org. Coat., 64 (4) 383–386 (2009)

    Article  CAS  Google Scholar 

  86. Mohammadkhani, R, Ramezanzadeh, M, Akbarzadeh, S, Bahlakeh, G, Ramezanzadeh, B, “Graphene Oxide Nanoplatforms Reduction by Green Plant-Sourced Organic Compounds for Construction of an Active Anti-Corrosion Coating; Experimental/Electronic-Scale DFT-D Modeling Studies.” Chem. Eng. J., 397 125433 (2020)

    Article  CAS  Google Scholar 

  87. Fu, JJ, et al. “Acid and Alkaline Dual Stimuliresponsive Mechanized Hollow Mesoporous Silica Nanoparticles as Smart Nanocontainers for Intelligent Anticorrosion Coatings.” ACS Nano, 7 (12) 11397–11408 (2013)

    Article  CAS  Google Scholar 

  88. Xu, JB, Cao, YQ, Fang, L, Hu, JM, “A One-Step Preparation of Inhibitor-Loaded Silica Nanocontainers for Self-Healing Coatings.” Corros. Sci., 140 349–362 (2018)

    Article  CAS  Google Scholar 

  89. Abdullayev, E, et al. “Self-Healing Coatings Based on Halloysite Clay Polymer Composites for Protection of Copper Alloys.” ACS Appl. Mater. Interfaces, 5 (10) 4464–4471 (2013)

    Article  CAS  Google Scholar 

  90. Ling, CC, Xue, QZ, Jing, NN, Xia, D, “Collapse and Stability of Functionalized Carbon Nanotubes on Fe (1 0 0) Surface.” RSC Adv., 2 (19) 7549–7556 (2012)

    Article  CAS  Google Scholar 

  91. Balaskas, AC, Kartsonakis, IA, Tziveleka, LA, Kordas, GC, “Improvement of Anti-Corrosive Properties of Epoxy-Coated AA 2024–T3 with TiO2 Nanocontainers Loaded with 8-Hydroxyquinoline.” Prog. Org. Coat., 74 (3) 418–426 (2012)

    Article  CAS  Google Scholar 

  92. Cao, K, Yu, Z, Yin, D, “Preparation of Ce-MOF@TEOS to Enhance the Anti-Corrosion Properties of Epoxy Coatings.” Prog. Org. Coat., 135 613–621 (2019)

    Article  CAS  Google Scholar 

  93. Chen, T, Fu, J, “An Intelligent Anticorrosion Coating Based on pH-Responsive Supramolecular Nanocontainers.” Nanotechnology, 23 (50) 505705 (2012)

    Article  Google Scholar 

  94. Hang, TTX, Truc, TA, Duong, NT, Vu, PG, Hoang, T, “Preparation and Characterization of Nanocontainers of Corrosion Inhibitor Based on Layered Double Hydroxides.” Appl. Clay Sci., 67–68 18–25 (2012)

    Article  Google Scholar 

  95. Jiang, D, et al. “A Novel Coating System with Self-Reparable Slippery Surface and Active Corrosion Inhibition for Reliable Protection of Mg Alloy.” Chem. Eng. J., 373 285 (2019)

    Article  CAS  Google Scholar 

  96. Feng, Y, Cheng, YF, “An Intelligent Coating Doped with Inhibitor-Encapsulated Nanocontainers for Corrosion Protection of Pipeline Steel.” Chem. Eng. J., 315 537–551 (2017)

    Article  CAS  Google Scholar 

  97. Kitagawa, S, Kitaura, R, Noro, S, “Functional Porous Coordination Polymers.” Angew. Chem. Int. Ed. Engl., 43 (18) 2334–2375 (2004)

    Article  CAS  Google Scholar 

  98. Furukawa, H, Cordova, KE, O’Keeffe, M, Yaghi, OM, “The Chemistry and Applications of Metal-Organic Frameworks.” Science, 341 (6149) 1230444 (2013)

    Article  Google Scholar 

  99. Collins, DJ, Zhou, HC, “Hydrogen Storage in Metal-Organic Frameworks.” J. Mater. Chem. A, 17 (30) 3154–3160 (2007)

    Article  CAS  Google Scholar 

  100. Yoon, M, Srirambalaji, R, Kim, K, “Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis.” Chem. Rev., 112 (2) 1196–1231 (2012)

    Article  CAS  Google Scholar 

  101. Liu, J, et al. “Applications of Metal-Organic Frameworks in Heterogeneous Supramolecular Catalysis.” Chem. Soc. Rev., 43 (16) 6011–6061 (2014)

    Article  CAS  Google Scholar 

  102. Kreno, LE, et al. “Metal-Organic Framework Materials as Chemical Sensors.” Chem. Rev., 112 (2) 1105–1125 (2012)

    Article  CAS  Google Scholar 

  103. Zhou, C, et al. “Metal Organic Frameworks (MOFs) as Multifunctional Nanoplatform for Anticorrosion Surfaces and Coatings.” Adv. Colloid. Interface Sci., 305 102707 (2022)

    Article  CAS  Google Scholar 

  104. Yang, C, et al. “A pH-Responsive Hydrophilic Controlled Release System Based on ZIF-8 for Self-Healing Anticorrosion Application.” Chem. Eng. J., 415 128985 (2021)

    Article  CAS  Google Scholar 

  105. Yan, H, Fan, X, Cai, M, Song, S, Zhu, M, “Amino-Functionalized Ti3C2Tx Loading ZIF-8 Nanocontainer@Benzotriazole as Multifunctional Composite Filler Towards Self-Healing Epoxy Coating.” J. Colloid. Interface Sci., 602 131–145 (2021)

    Article  CAS  Google Scholar 

  106. Motamedi, M, Mohammadkhah, S, Ramezanzadeh, M, Eivaz Mohammadloo, H, Ramezanzadeh, B, “Designing Hybrid Mesoporous Pr/Tannate-Inbuilt ZIF8-Decorated MOS2 as Novel Nanoreservoirs Toward Smart pH-Triggered Anti-Corrosion/Robust Thermomechanical Epoxy Nanocoatings.” ACS Appl. Materi. Interfaces, 14 (27) 31170–31193 (2022)

    Article  CAS  Google Scholar 

  107. Xiao, S, Cao, X, Dong, Z, Ma, X, Zhang, X, Cai, G, “A Ph-Responsive Cerium-Imidazole Decorated ZIF-8 to Achieve Self-Healing Barrier Property for Epoxy Coating on Al Alloy by Controlled Release.” Prog. Org. Coat., 163 106640 (2022)

    Article  CAS  Google Scholar 

  108. Zhou, C, et al. “Epoxy Composite Coating with Excellent Anticorrosion and Self-Healing Performances Based on Multifunctional Zeolitic Imidazolate Framework Derived Nanocontainers.” Chem. Eng. J., 385 123835 (2020)

    Article  CAS  Google Scholar 

  109. Seidi, F, et al., “Metal-Organic Framework (MOF)/Epoxy Coatings: A Review.” Materials (Basel), 13 2881 (12) (2020)

  110. Tasdelen, MA, “Diels-Alder ‘Click’ Reactions: Recent Applications in Polymer and Material Science.” Polym. Chem., 2 (10) 2133 (2011)

    Article  CAS  Google Scholar 

  111. Nemoto, T, Konishi, G-i, “Synthesis and Properties of New Organosoluble Alkoxylated Naphthalene-Based Novolacs Preparaed by Addition-Condensation of Mono- or Di-Alkoxynaphthalene with Formaldehyde.” Polym. J., 40 (7) 651–656 (2008)

    Article  CAS  Google Scholar 

  112. Thys, M, Brancart, J, Van Assche, G, Vendamme, R, Van den Brande, N, “Reversible Lignin-Containing Networks Using Diels-Alder Chemistry.” Macromolecules, 54 (20) 9750–9760 (2021)

    Article  CAS  Google Scholar 

  113. Syrett, JA, Mantovani, G, Barton, WR, Price, D, Haddleton, DM, “Self-Healing Polymers Prepared via Living Radical Polymerisation.” Polym. Chem., 1 (1) 102–106 (2010)

    Article  CAS  Google Scholar 

  114. Chen, XX, et al. “A Thermally Re-Mendable Cross-Linked Polymeric Material.” Science, 295 (5560) 1698–1702 (2002)

    Article  CAS  Google Scholar 

  115. Oehlenschlaeger, KK, et al. “Fast and Catalyst-Free Hetero-Diels-Alder Chemistry for on Demand Cyclable Bonding/Debonding Materials.” Polym. Chem., 4 (16) 4348–4355 (2013)

    Article  CAS  Google Scholar 

  116. Oehlenschlaeger, KK, et al. “Adaptable Hetero Diels-Alder Networks for Fast Self-Healing Under Mild Conditions.” Adv. Mater., 26 (21) 3561–3566 (2014)

    Article  CAS  Google Scholar 

  117. Pramanik, NB, Nando, GB, Singha, NK, “Self-Healing Polymeric Gel via Raft Polymerization and Diels-Alder Click Chemistry.” Polymer, 69 349–356 (2015)

    Article  CAS  Google Scholar 

  118. Duval, A, Couture, G, Caillol, S, Avérous, L, “Biobased and Aromatic Reversible Thermoset Networks from Condensed Tannins via the Diels-Alder Reaction.” ACS Sust. Chem. Eng., 5 (1) 1199–1207 (2016)

    Article  Google Scholar 

  119. Black, SP, Sanders, JK, Stefankiewicz, AR, “Disulfide Exchange: Exposing Supramolecular Reactivity Through Dynamic Covalent Chemistry.” Chem. Soc. Rev., 43 (6) 1861–1872 (2014)

    Article  CAS  Google Scholar 

  120. Chemtob, A, Feillee, N, Vaulot, C, Ley, C, Le Nouen, D, “Self-Photopolymerization of Poly(Disulfide) Oligomers.” ACS Omega, 4 (3) 5722–5730 (2019)

    Article  CAS  Google Scholar 

  121. Liu, M, et al. “A High Stiffness and Self-Healable Polyurethane Based on Disulfide Bonds and Hydrogen Bonding.” Eur. Polym. J., 124 109475 (2020)

    Article  CAS  Google Scholar 

  122. Jing, T, et al. “Rapid Self-Healing and Tough Polyurethane Based on the Synergy of Multi-Level Hydrogen and Disulfide Bonds for Healing Propellant Microcracks.” Mater. Chem. Front., 6 (9) 1161–1171 (2022)

    Article  CAS  Google Scholar 

  123. Rekondo, A, et al. “Catalyst-Free Room-Temperature Self-Healing Elastomers Based on Aromatic Disulfide Metathesis.” Mater. Horizons, 1 (2) 237 (2014)

    Article  CAS  Google Scholar 

  124. de Luzuriaga, AR, Martin, R, Markaide, N, Rekondo, A, Cabañero, G, Rodríguez, J, Odriozola, I, “Epoxy Resin with Exchangeable Disulfide Crosslinks to Obtain Reprocessable, Repairable and Recyclable Fiber-Reinforced Thermoset Composites.” Mater. Horizons, 3 (3) 241–247 (2016)

    Article  Google Scholar 

  125. Xu, M, et al. “High-Performance Cross-Linked Self-Healing Material Based on Multiple Dynamic Bonds.” ACS Appl. Mater., 2 (6) 2228–2237 (2020)

    CAS  Google Scholar 

  126. Damien, M, Mathieu, C, François, T, Ludwik, L, “Silica-Like Malleable Materials from Permanent Organic Networks.” Science, 334 (18) 965–967 (2011)

    Google Scholar 

  127. Altuna, FI, Pettarin, V, Williams, RJJ, “Self-Healable Polymer Networks Based on the Cross-Linking of Epoxidised Soybean Oil by an Aqueous Citric Acid Solution.” Green Chem., 15 (12) 3360–3366 (2013)

    Article  CAS  Google Scholar 

  128. Song, P, Wang, H, “High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking.” Adv. Mater., 32 (18) 1901244 (2020)

    Article  CAS  Google Scholar 

  129. Yang, Y, et al. “H-Bonding Supramolecular Hydrogels with Promising Mechanical Strength and Shape Memory Properties for Postoperative Antiadhesion Application.” ACS Appl. Mater. Interfaces, 12 (30) 34161–34169 (2020)

    Article  CAS  Google Scholar 

  130. Chen, YT, Wang, F, Zhang, M, Zeng, H, “The Catalytic Effect on H2O2 Electro-Reduction of an Electrode Based on MOF Material ZIF-8 as Hemoglobin Supporter via Hydrogen Bond Interaction.” J. Electron. Mater., 24 653 (2022)

    Google Scholar 

  131. Chen, Y, Wang, Y, Su, T, Chen, J, Zhang, C, Lai, X, Guo, Z, “Self-Healing Polymer Composites Based on Hydrogen Bond Reinforced with Graphene Oxide.” ES Mater. Manuf., 4 (7) 31–37 (2019)

    CAS  Google Scholar 

  132. Liu, C, Wu, H, Qiang, Y, Zhao, H, Wang, L, “Design of Smart Protective Coatings with Autonomous Self-Healing and Early Corrosion Reporting Properties.” Corros. Sci., 184 190355 (2021)

    Article  Google Scholar 

  133. Bai, ZG, Bai, YY, Zhang, GP, Wang, SQ, Zhang, B, “A Hydrogen Bond Based Self-Healing Superhydrophobic Octadecyltriethoxysilane-Lignocellulose/Silica Coating.” Prog. Org. Coat., 151 106104 (2021)

    Article  CAS  Google Scholar 

  134. Liu, T, et al. “Ultrafast and High-Efficient Self-Healing Epoxy Coatings with Active Multiple Hydrogen Bonds for Corrosion Protection.” Corros. Sci., 187 109485 (2021)

    Article  CAS  Google Scholar 

  135. Shao, C, Chang, H, Wang, M, Xu, F, Yang, J, “High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds.” ACS Appl. Mater. Interfaces, 9 (34) 28305–28318 (2017)

    Article  CAS  Google Scholar 

  136. Zhou, Z, et al. “Room Temperature Self-Healing Crosslinked Elastomer Constructed by Dynamic Urea Bond and Hydrogen Bond.” Prog. Org. Coat., 154 106213 (2021)

    Article  CAS  Google Scholar 

  137. Mohamadhoseini, M, Mohamadnia, Z, “Supramolecular Self-Healing Materials via Host-Guest Strategy Between Cyclodextrin and Specific Types of Guest Molecules.” Coord. Chem. Rev., 432 213711 (2021)

    Article  CAS  Google Scholar 

  138. Deng, J, et al. “Light-Triggered Switching of Reversible and Alterable Biofunctionality via Β-Cyclodextrin/Azobenzene-Based Host-Guest Interaction.” ACS Macro. Lett., 3 (11) 1130–1133 (2014)

    Article  CAS  Google Scholar 

  139. Guo, K, et al. “Conductive Elastomers with Autonomic Self-Healing Properties.” Angew. Chem. Int. Ed. Engl., 54 (41) 12127–12133 (2015)

    Article  CAS  Google Scholar 

  140. Shan, X, Han, J, Li, J, Song, Y, Hu, Y, “Preparation of β-CD@Ferrocene@Hollow Mesoporous Silica Microsphere and Investigation of Its Flame Retardant EP.” Polym. Compos., 41 (5) 2013–2024 (2020)

    Article  CAS  Google Scholar 

  141. Xuan, H, Ren, J, Zhang, J, Ge, L, “Novel Highly-Flexible, Acid-Resistant and Self-Healing Host-Guest Transparent Multilayer Films.” Appl. Surf. Sci., 411 303–314 (2017)

    Article  CAS  Google Scholar 

  142. Sun, X, et al. “Recent Progress in Graphene/Polymer Nanocomposites.” Adv. Mater., 33 (6) 2001105 (2021)

    Article  CAS  Google Scholar 

  143. Liu, C, et al. “Efficient Graphene/Cyclodextrin-Based Nanocontainer: Synthesis and Host-Guest Inclusion for Self-Healing Anticorrosion Application.” ACS Appl. Mater. Interfaces, 10 (42) 36229–36239 (2018)

    Article  CAS  Google Scholar 

  144. Hu, Z, et al. “Multistimuli-Responsive Intrinsic Self-Healing Epoxy Resin Constructed by Host-Guest Interactions.” Macromolecules, 51 (14) 5294–5303 (2018)

    Article  CAS  Google Scholar 

  145. Yang, X, et al. “Self-Healing Polymer Materials Constructed by Macrocycle-Based Host-Guest Interactions.” Soft Matter., 11 (7) 1242–1252 (2015)

    Article  CAS  Google Scholar 

  146. Chen, L, et al. “A Stiff yet Rapidly Self-Healable Elastomer in Harsh Aqueous Environments.” Adv. Funct. Mater., 32 (1) 2107538 (2021)

    Article  Google Scholar 

  147. Cao, Y, et al. “A Transparent, Self-Healing, Highly Stretchable Ionic Conductor.” Adv. Mater., 29 (10) 1605099 (2017)

    Article  Google Scholar 

  148. Yichun, D, et al. “Research Progress of Intrinsic Self-Healing Polymer Material.” J. Mater. Sci. Eng., 38 (03) 509–516 (2020)

    Google Scholar 

  149. Wang, C, et al. “Dual-Functional Anti-Biofouling Coatings with Intrinsic Self-Healing Ability.” Chem. Eng. J., 389 123469 (2020)

    Article  CAS  Google Scholar 

  150. Luo, X, Mather, PT, “Shape Memory Assisted Self-Healing Coating.” ACS Macro. Lett., 2 (2) 152 (2013)

    Article  CAS  Google Scholar 

  151. Bhattacharya, S, Hailstone, R, Lewis, CL, “Thermoplastic Blend Exhibiting Shape Memory-Assisted Self-Healing Functionality.” ACS Appl. Mater. Interfaces, 12 (41) 46733 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support by the Open Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry (202207B07) and Doctoral Research Start-up Foundation of Hubei University of Technology (Nos. XJ2021005601) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Cen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Gao, Y., Gong, X. et al. Advance of design and application in self-healing anticorrosive coating: a review. J Coat Technol Res 20, 819–841 (2023). https://doi.org/10.1007/s11998-022-00735-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-022-00735-6

Keywords

Navigation