Skip to main content

Self-Healing Mechanisms in Chemical Conversion Coatings

  • Chapter
  • First Online:
Conversion Coatings for Magnesium and its Alloys

Abstract

High specific-strength magnesium-based materials are the promising substitute for traditional metallic materials like steel, but their easy corrosivity has caused serious resource waste and safely problems. Chemical conversion coating, as a primer coating for corrosion-resistant surface coating, has a great chance to provide primary and durable corrosion-resistant performance through rationally designed self-healing treatment for preventing further corrosion of damaged sites. Herein, this chapter provides a comprehensive and updated review of the advantages and limitations associated with various chemical conversion coating-based self-healing corrosion protection systems and their mechanisms of action. Self-healing chemical conversion coating tends to be autonomous healing mechanisms with minimal or no intervention, thus possessing the “smart” property. Therefore, self-healing chemical conversion coatings are focused on improving corrosion resistance, self-healing ability, repair durability, cost-efficiency, and environmental-friendliness, instead of the design of stimulation response mechanisms. The hope that obtains high-performance self-healing conversion coatings through tuning simple preparation technologies and multifunctional coating under the premise of simple preparation methods, which will be beneficial for sustainable development in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abatti, G. P., Pires, A. T. N., Spinelli, A., Scharnagl, N., & Da Conceicao, T. F. (2018). Conversion coating on magnesium alloy sheet (AZ31) by vanillic acid treatment: Preparation, characterization and corrosion behavior. Journal of Alloys and Compounds, 738(1), 224–232.

    Article  CAS  Google Scholar 

  • Agarwal, S., Curtin, J., Duffy, B., & Jaiswal, S. (2016). Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Materials Science & Engineering. C, Materials for Biological Applications, 68(1), 948–963.

    Article  CAS  Google Scholar 

  • Amini, R., & Sarabi, A. A. (2011). The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent. Applied Surface Science, 257(16), 7134–7139.

    Article  CAS  Google Scholar 

  • Angelos, S., Khashab, N. M., Yang, Y. W., Trabolsi, A., Khatib, H. A., Stoddart, J. F., & Zink, J. I. (2009). pH clock-operated mechanized nanoparticles. Journal of the American Chemical Society, 131(36), 12912–12914.

    Article  CAS  Google Scholar 

  • Anjum, M. J., Zhao, J. M., Asl, V. Z., Yasin, G., Wang, W., Wei, S. X., Zhao, Z. J., & Khan, W. Q. (2019). In-situ intercalation of 8-hydroxyquinoline in Mg-Al LDH coating to improve the corrosion resistance of AZ31. Corrosion Science, 157(1), 1–10.

    Google Scholar 

  • Birbilis, N., Howlett, P. C., Macfarlane, D. R., & Forsyth, M. (2007). Exploring corrosion protection of Mg via ionic liquid pretreatment. Surface and Coating Technology, 201(8), 4496–4504.

    Article  CAS  Google Scholar 

  • Bokati, K. S., Dehghanian, C., & Yari, S. (2017). Corrosion inhibition of copper, mild steel and galvanically coupled copper-mild steel in artificial sea water in presence of 1H-benzotriazole, sodium molybdate and sodium phosphate. Corrosion Science, 126(1), 272–285.

    Article  CAS  Google Scholar 

  • Brewis, D., Mathieson, I., Sutherland, I., Cayless, R., & Dahm, R. (1996). Pretreatment of poly (vinyl fluoride) and poly (vinylidene fluoride) with potassium hydroxide. International Journal of Adhesion and Adhesives, 16(2), 87–95.

    Article  CAS  Google Scholar 

  • Broughton, G., 2nd, Janis, J., & Attinger, C. (1997). The basic science of wound healing. The Surgical Clinics of North America, 77(1), 509–528.

    Google Scholar 

  • Brunelli, K., Dabala, M., Calliari, I., & Magrini, M. (2005). Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys. Corrosion Science, 47(4), 989–1000.

    Article  CAS  Google Scholar 

  • Calado, L. M., Taryba, M. G., Carmezim, M. J., & Montemor, F. (2018). Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy. Corrosion Science, 142(1), 12–21.

    Article  CAS  Google Scholar 

  • Caruso, M. M., Blaiszik, B. J., White, S. R., Sottos, N. R., & Moore, J. S. (2008). Full recovery of fracture toughness using a nontoxic solvent-based self-healing system. Advanced Functional Materials, 18(13), 1898–1904.

    Article  CAS  Google Scholar 

  • Chen, X. B., Birbilis, N., & Abbott, T. B. (2011). Review of corrosion-resistant conversion coatings for magnesium and its alloys. Corrosion, 67(3), 035005–035021.

    Article  Google Scholar 

  • Chen, X. B., Birbilis, N., & Abbott, T. B. (2012). Effect of [Ca2+] and [PO43−] levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D. Corrosion Science, 55(1), 226–232.

    Article  CAS  Google Scholar 

  • Chen, J., Song, Y. W., Shan, D. Y., & Han, E. H. (2013). Modifications of the hydrotalcite film on AZ31 Mg alloy by phytic acid: The effects on morphology, composition and corrosion resistance. Corrosion Science, 74(1), 130–138.

    Article  CAS  Google Scholar 

  • Cheng, Y. L., Wu, H. L., Chen, Z. H., Wang, H. M., & Li, L. L. (2006). Phosphating process of AZ31 magnesium alloy and corrosion resistance of coatings. Transactions of Nonferrous Metals Society of China, 16(5), 1086–1091.

    Article  CAS  Google Scholar 

  • Chiu, K., Wong, M., Cheng, F., & Man, H. C. (2007). Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surface and Coating Technology, 202(3), 590–598.

    Article  CAS  Google Scholar 

  • Cipriano, A. F., Sallee, A., Guan, R. G., Zhao, Z. Y., Tayoba, M., Sanchez, J., & Liu, H. (2015). Investigation of magnesium-zinc-calcium alloys and bone marrow derived mesenchymal stem cell response in direct culture. Acta Biomaterialia, 12(1), 298–321.

    Article  CAS  Google Scholar 

  • Crea, F., De Stefano, C., Milea, D., & Sammartano, S. (2008). Formation and stability of phytate complexes in solution. Coordination Chemistry Reviews, 252(10–11), 1108–1120.

    Article  CAS  Google Scholar 

  • Cui, X. J., Liu, C. H., Yang, R. S., Fu, Q. S., Lin, X. Z., & Gong, M. (2013). Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism. Corrosion Science, 76(1), 474–485.

    Article  CAS  Google Scholar 

  • Cui, X. F., Liu, Z., Lin, L. L., Jin, G., Wang, H. D., & Xu, B. S. (2015). Investigation of carboxylic acid-neodymium conversion films on magnesium alloy. Journal of Materials Engineering and Performance, 24(1), 461–467.

    Article  CAS  Google Scholar 

  • Da Conceicao, T. F., Scharnagl, N., Dietzel, W., Hoeche, D., & Kainer, K. (2011). Study on the interface of PVDF coatings and HF-treated AZ31 magnesium alloy: Determination of interfacial interactions and reactions with self-healing properties. Corrosion Science, 53(2), 712–719.

    Article  CAS  Google Scholar 

  • De Souza, F. S., & Spinelli, A. (2009). Caffeic acid as a green corrosion inhibitor for mild steel. Corrosion Science, 51(3), 642–649.

    Article  CAS  Google Scholar 

  • Dorozhkin, S. V. (2014). Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomaterialia, 10(7), 2919–2934.

    Article  CAS  Google Scholar 

  • Elsentriecy, H. H., Azumi, K., & Konno, H. (2008). Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy. Electrochimica Acta, 53(12), 4267–4275.

    Article  CAS  Google Scholar 

  • El-Sherbini, E. E. F., Abd-El-Wahab, S. M., Amin, M. A., & Deyab, M. A. (2006). Electrochemical behavior of tin in sodium borate solutions and the effect of halide ions and some inorganic inhibitors. Corrosion Science, 48(8), 1885–1898.

    Article  CAS  Google Scholar 

  • Feng, X. G., Shi, R. L., Lu, X. Y., Xu, Y. W., Huang, X. F., & Chen, D. (2017). The corrosion inhibition efficiency of aluminum tripolyphosphate on carbon steel in carbonated concrete pore solution. Corrosion Science, 124(1), 150–159.

    Article  CAS  Google Scholar 

  • Frignani, A., Grassi, V., Zanotto, F., & Zucchi, F. (2012). Inhibition of AZ31 Mg alloy corrosion by anionic surfactants. Corrosion Science, 63(1), 29–39.

    Article  CAS  Google Scholar 

  • Gao, J. F., & Suo, J. P. (2011). Effects of heating temperature and duration on the microstructure and properties of the self-healing coatings. Surface and Coating Technology, 206(6), 1342–1350.

    Article  CAS  Google Scholar 

  • Gao, H. F., Tan, H. Q., Li, J., Wang, Y. Q., & Xun, J. Q. (2012). Synergistic effect of cerium conversion coating and phytic acid conversion coating on AZ31B magnesium alloy. Surface and Coating Technology, 212(1), 32–36.

    Article  CAS  Google Scholar 

  • Guo, X. H., Du, K. Q., Guo, Q. Z., Wang, Y., Wang, R., & Wang, F. H. (2013). Effect of phytic acid on the corrosion inhibition of composite film coated on Mg-Gd-Y alloy. Corrosion Science, 76(1), 129–141.

    Article  CAS  Google Scholar 

  • Guo, L., Zhang, F., Lu, J. C., Zeng, R. C., Li, S. Q., Song, L., & Zeng, J. M. (2018). A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Frontiers of Materials Science, 12(2), 198–206.

    Article  Google Scholar 

  • Habenicht, G. (2005). Kleben: Grundlagen, Technologien, Anwendungen. Springer, ISBN: 978-3540262732.

    Google Scholar 

  • Habibiyan, A., Ramezanzadeh, B., Mahdavian, M., Bahlakeh, G., & Kasaeian, M. (2020). Rational assembly of mussel-inspired polydopamine (PDA)-Zn(II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application. Chemical Engineering Journal, 391(1), 123630–123630.

    Article  CAS  Google Scholar 

  • Hamdy, A. S., Doench, I., & Mohwald, H. (2011). Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media. Electrochimica Acta, 56(5), 2493–2502.

    Article  CAS  Google Scholar 

  • Han, E. H., Zhou, W., Shan, D., & Ke, W. (2003). Corrosion and protection of magnesium alloy AZ31d by a new conversion coating. Materials Science Forum, 419–422, 879–882.

    Article  Google Scholar 

  • Haque, J., Srivastava, V., Verma, C., & Quraishi, M. (2017). Experimental and quantum chemical analysis of 2-amino-3-((4-((S)-2-amino-2-carboxyethyl)-1H-imidazol-2-yl) thio) propionic acid as new and green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. Journal of Molecular Liquids, 225(1), 848–855.

    Article  CAS  Google Scholar 

  • Hassannejad, H., Moghaddasi, M., Saebnoori, E., & Baboukani, A. R. (2017). Microstructure, deposition mechanism and corrosion behavior of nanostructured cerium oxide conversion coating modified with chitosan on AA2024 aluminum alloy. Journal of Alloys and Compounds, 725(1), 968–975.

    Article  CAS  Google Scholar 

  • Hiromoto, S. (2015). Self-healing property of hydroxyapatite and octacalcium phosphate coatings on pure magnesium and magnesium alloy. Corrosion Science, 100(1), 284–294.

    Article  CAS  Google Scholar 

  • Howlett, P. C., Gramet, S., Lin, J., Efthimiadis, J., Chen, X. B., Birbilis, N., & Forsyth, M. (2012). Conversion coatings of Mg-alloy AZ91D using trihexyl(tetradecyl) phosphonium bis(trifluoromethanesulfonyl)amide ionic liquid. Science China Chemistry, 55(8), 1598–1607.

    Article  CAS  Google Scholar 

  • Hu, K., Zhuang, J., Ding, J. T., Ma, Z., Wang, F., & Zeng, X. G. (2017). Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corrosion Science, 125(1), 68–76.

    Article  CAS  Google Scholar 

  • Hughes, A. E., Cole, I. S., Muster, T. H., & Varley, R. J. (2010). Designing green, self-healing coatings for metal protection. NPG Asia Materials, 2(4), 143–151.

    Article  Google Scholar 

  • Huo, H. W., Li, Y., & Wang, F. H. (2004). Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer. Corrosion Science, 46(6), 1467–1477.

    Article  CAS  Google Scholar 

  • Ishizaki, T., Masuda, Y., & Saito, N. (2009). Chemical deposition and corrosive resistance of TiO2/MgF2 composite Nanofilm on magnesium alloy AZ31. Electrochemical and Solid-State Letters, 12(9), D68–D71.

    Article  CAS  Google Scholar 

  • Jamali, S. S., Moulton, S. E., Tallman, D. E., Zhao, Y., Weber, J., & Wallace, G. G. (2017). Self-healing characteristic of praseodymium conversion coating on AZNd Mg alloy studied by scanning electrochemical microscopy. Electrochemistry Communications, 76(1), 6–9.

    Article  CAS  Google Scholar 

  • Jespersen, J. (1988). Pathophysiology and clinical aspects of fibrinolysis and inhibition of coagulation. Experimental and clinical studies with special reference to women on oral contraceptives and selected groups of thrombosis prone patients. Danish Medical Bulletin, 35(1), 1–33.

    CAS  Google Scholar 

  • Ji, W. G., Hu, J. M., Zhang, J. Q., & Cao, C. N. (2006). Reducing the water absorption in epoxy coatings by silane monomer incorporation. Corrosion Science, 48(11), 3731–3739.

    Article  CAS  Google Scholar 

  • Jian, S. Y., Yang, C. Y., & Chang, J. K. (2020). Robust corrosion resistance and self-healing characteristics of a novel Ce/Mn conversion coatings on EV31 magnesium alloys. Applied Surface Science, 510(1), 145385.

    Article  CAS  Google Scholar 

  • Jiang, X., Guo, R. G., & Jiang, S. Q. (2016). Evaluation of self-healing ability of Ce-V conversion coating on AZ31 magnesium alloy. Journal of Magnesium and Alloys, 4(3), 230–241.

    Article  CAS  Google Scholar 

  • Jin, G., Yang, Y. Y., Cui, X. F., Liu, E. B., Wang, Z. Y., & Li, Q. F. (2011). Chrome-free neodymium-based protective coatings for magnesium alloys. Materials Letters, 65(8), 1145–1147.

    Article  CAS  Google Scholar 

  • Keller, M. W., White, S. R., & Sottos, N. R. (2007). A self-healing poly(dimethyl siloxane) elastomer. Advanced Functional Materials, 17(14), 2399–2404.

    Article  CAS  Google Scholar 

  • Kohler, K., Shchukin, D. G., Mohwald, H., & Sukhorukov, G. B. (2005). Thermal behavior of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number. The Journal of Physical Chemistry. B, 109(39), 18250–18259.

    Article  CAS  Google Scholar 

  • Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849), 426–430.

    Article  CAS  Google Scholar 

  • Lee, J., Shin, S., Jiang, Y. H., Jeong, C., Stone, H. A., & Choi, C. H. (2017). Oil-impregnated Nanoporous oxide layer for corrosion protection with self-healing. Advanced Functional Materials, 27(15), 1606040.

    Article  CAS  Google Scholar 

  • Lei, Q., Guo, J. M., Noureddine, A., Wang, A. X., Wuttke, S., Brinker, C. J., & Zhu, W. (2020). Sol-gel-based advanced porous silica materials for biomedical applications. Advanced Functional Materials, 30(41), 1909539.

    Article  CAS  Google Scholar 

  • Li, D. D., Wang, F. Y., Yu, X., Wang, J., Liu, Q., Yang, P. P., He, Y., Wang, Y. L., & Zhang, M. L. (2011). Anticorrosion organic coating with layered double hydroxide loaded with corrosion inhibitor of tungstate. Progress in Organic Coating, 71(3), 302–309.

    Article  CAS  Google Scholar 

  • Li, X., Liu, X., Wu, S., Yeung, K. W. K., Zheng, Y., & Chu, P. K. (2016). Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomaterialia, 45(1), 2–30.

    Article  CAS  Google Scholar 

  • Li, Y., Cai, S., Shen, S. B., Xu, G. H., Zhang, F. Y., & Wang, F. W. (2018a). Self-healing hybrid coating of phytic acid/silane for improving the corrosion resistance of magnesium alloy. Journal of Coating Technology and Research, 15(3), 571–581.

    Article  CAS  Google Scholar 

  • Li, Y., Cai, S., Shen, S., Xu, G., Zhang, F., & Wang, F. (2018b). Self-healing hybrid coating of phytic acid/silane for improving the corrosion resistance of magnesium alloy. Journal of Coating Technology and Research, 15(3), 571–581.

    Article  CAS  Google Scholar 

  • Lin, J. K., & Uan, J. Y. (2009). Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3/CO32− and corresponding protection against corrosion by the coating. Corrosion Science, 51(5), 1181–1188.

    Article  CAS  Google Scholar 

  • Lin, Y. J., Wang, J. R., Evans, D. G., & Li, D. Q. (2006). Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin. Journal of Physics and Chemistry of Solids, 67(5–6), 998–1001.

    Article  CAS  Google Scholar 

  • Lin, J. K., Hsia, C. L., & Uan, J. Y. (2007). Characterization of Mg,Al-hydrotalcite conversion film on Mg alloy and Cl and CO32− anion-exchangeability of the film in a corrosive environment. Scripta Materialia, 56(11), 927–930.

    Article  CAS  Google Scholar 

  • Lin, J. K., Jeng, K. L., & Uan, J. Y. (2011a). Crystallization of a chemical conversion layer that forms on AZ91D magnesium alloy in carbonic acid. Corrosion Science, 53(11), 3832–3839.

    Article  CAS  Google Scholar 

  • Lin, J. K., Uan, J. Y., Wu, C. P., & Huang, H. H. (2011b). Direct growth of oriented Mg-Fe layered double hydroxide (LDH) on pure Mg substrates and in vitro corrosion and cell adhesion testing of LDH-coated Mg samples. Journal of Materials Chemistry, 21(13), 5011–5020.

    Article  CAS  Google Scholar 

  • Liu, J. P., Li, Y. Y., Huang, X. T., Li, G. Y., & Li, Z. K. (2008). Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Advanced Functional Materials, 18(9), 1448–1458.

    Article  CAS  Google Scholar 

  • Liu, X. X., Zhang, H. R., Wang, J. X., Wang, Z., & Wang, S. C. (2012). Preparation of epoxy microcapsule based self-healing coatings and their behavior. Surface and Coating Technology, 206(23), 4976–4980.

    Article  CAS  Google Scholar 

  • Liu, L., Yang, Q. Y., Huang, L., Liu, X. M., Liang, Y. Q., Cui, Z. D., Yang, X. J., Zhu, S. L., Li, Z. Y., Zheng, Y. F., Yeung, K. W. W., & Wu, S. L. (2019). The effects of a phytic acid/calcium ion conversion coating on the corrosion behavior and osteoinductivity of a magnesium-strontium alloy. Applied Surface Science, 484(1), 511–523.

    Article  CAS  Google Scholar 

  • Lu, X. P., Li, Y., Ju, P. F., Chen, Y., Yang, J. S., Qian, K., Zhang, T., & Wang, F. H. (2019). Unveiling the inhibition mechanism of an effective inhibitor for AZ91 Mg alloy. Corrosion Science, 148(1), 264–271.

    Article  CAS  Google Scholar 

  • Luo, X. F., & Mather, P. T. (2013). Shape memory assisted self-healing coating. ACS Macro Letters, 2(2), 152–156.

    Article  CAS  Google Scholar 

  • Lv, L. P., Jiang, S., Inan, A., Landfester, K., & Crespy, D. (2017). Redox-responsive release of active payloads from depolymerized nanoparticles. RSC Advances, 7(14), 8272–8279.

    Article  CAS  Google Scholar 

  • Ma, R. Z., Liu, Z. P., Li, L., Iyi, N., & Sasaki, T. (2006). Exfoliating layered double hydroxides in formamide: A method to obtain positively charged nanosheets. Journal of Materials Chemistry, 16(39), 3809–3813.

    Article  CAS  Google Scholar 

  • Mei, D., Lamaka, S. V., Lu, X. P., & Zheludkevich, M. L. (2020). Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review. Corrosion Science, 171(1), 108722–108722.

    Article  CAS  Google Scholar 

  • Meng, G. Z., Sun, F. L., Shaoa, Y. W., Zhang, T., Wang, F. H., Dong, C. F., & Li, X. G. (2010). Effect of phytic acid on the microstructure and corrosion resistance of Ni coating. Electrochimica Acta, 55(20), 5990–5995.

    Article  CAS  Google Scholar 

  • Metroke, T. L., Gandhi, J. S., & Apblett, A. (2004). Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy. Progress in Organic Coating, 50(4), 231–246.

    Article  CAS  Google Scholar 

  • Montemor, M. F. (2014). Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coating Technology, 258(1), 17–37.

    Article  CAS  Google Scholar 

  • Mosiałek, M., Mordarski, G., Nowak, P., Simka, W., Nawrat, G., Hanke, M., Socha, R., & Michalska, J. (2011). Phosphate–permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies. Surface and Coating Technology, 206(1), 51–62.

    Article  CAS  Google Scholar 

  • Muster, T. H., Sullivan, H., Lau, D., Alexander, D. L. J., Sherman, N., Garcia, S. J., Harvey, T. G., Markley, T. A., Hughes, A. E., Corrigan, P. A., Glenn, A. M., White, P. A., Hardin, S. G., Mardel, J., & Mol, J. M. C. (2012). A combinatorial matrix of rare earth chloride mixtures as corrosion inhibitors of AA2024-T3: Optimisation using potentiodynamic polarisation and EIS. Electrochimica Acta, 67(1), 95–103.

    Article  CAS  Google Scholar 

  • Niu, L. Y., Li, G. Y., Jiang, Z. H., Sun, L. P., Han, D., & Lian, J. S. (2006). Influence of sodium metanitrobenzene sulphonate on structures and surface morphologies of phosphate coating on AZ91D. Transactions of Nonferrous Metals Society of China, 16(3), 567–571.

    Article  CAS  Google Scholar 

  • Obot, I. B., Ankah, N. K., Sorour, A. A., Gasem, Z. M., & Haruna, K. (2017). 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustainable Materials and Technologies, 14(1), 1–10.

    Article  CAS  Google Scholar 

  • Panchenko, Y. M., & Marshakov, A. I. (2016). Long-term prediction of metal corrosion losses in atmosphere using a power-linear function. Corrosion Science, 109(1), 217–229.

    Article  CAS  Google Scholar 

  • Pommiers, S., Frayret, J., Castetbon, A., & Potin-Gautier, M. (2014). Alternative conversion coatings to chromate for the protection of magnesium alloys. Corrosion Science, 84(1), 135–146.

    Article  CAS  Google Scholar 

  • Pommiers-Belin, S., Frayret, J., Uhart, A., Ledeuil, J., Dupin, J. C., Castetbon, A., & Potin-Gautier, M. (2014). Determination of the chemical mechanism of chromate conversion coating on magnesium alloys EV31A. Applied Surface Science, 298(1), 199–207.

    Article  CAS  Google Scholar 

  • Rani, A., Somaiah, D., & Poddar, M. (2014). Scratch cell test: A simple, cost effective screening tool to evaluate self-healing in anti-corrosion coatings. Journal of Materials Engineering and Performance, 23(9), 3328–3335.

    Google Scholar 

  • Ross, G., Watts, J., Hill, M., & Morrissey, P. (2000). Surface modification of poly (vinylidene fluoride) by alkaline treatment. 1. The degradation mechanism. Polymer, 41(5), 1685–1696.

    Article  CAS  Google Scholar 

  • Saji, V. S. (2019). Progress in rust converters. Progress in Organic Coating, 127(1), 88–99.

    Article  CAS  Google Scholar 

  • Shchukin, D. G., & Sukhorukov, G. B. (2004). Nanoparticle synthesis in engineered organic nanoscale reactors. Advanced Materials, 16(8), 671–682.

    Article  CAS  Google Scholar 

  • Shchukin, D. G., Kohler, K., & Mohwald, H. (2006). Microcontainers with electrochemically reversible permeability. Journal of the American Chemical Society, 128(14), 4560–4561.

    Article  CAS  Google Scholar 

  • Soltani, N., Salavati, H., Rasouli, N., Paziresh, M., & Moghadasi, A. (2016). Adsorption and corrosion inhibition effect of Schiff Base ligands on low carbon steel corrosion in hydrochloric acid solution. Chemical Engineering Communications, 203(6), 840–854.

    CAS  Google Scholar 

  • Song, Y., Shan, D., Chen, R., Zhang, F., & Han, E.-H. (2009a). Formation mechanism of phosphate conversion film on Mg–8.8 Li alloy. Corrosion Science, 51(1), 62–69.

    Article  CAS  Google Scholar 

  • Song, Y., Shan, D., Chen, R., Zhang, F., & Han, E.-H. (2009b). A novel phosphate conversion film on Mg–8.8 Li alloy. Surface and Coating Technology, 203(9), 1107–1113.

    Article  CAS  Google Scholar 

  • Song, J. H., Cui, X. F., Liu, Z., Jin, G., Liu, E. B., Zhang, D., & Gao, Z. H. (2016). Advanced microcapsules for self-healing conversion coating on magnesium alloy in Ce(NO3)3 solution with microcapsules containing La(NO3)3. Surface and Coating Technology, 307(1), 500–505.

    Article  CAS  Google Scholar 

  • Strecker-Mcgraw, M. K., Jones, T. R., & Baer, D. G. (2007). Soft tissue wounds and principles of healing. Emergency Medicine Clinics of North America, 25(1), 1–22.

    Article  Google Scholar 

  • Sun, R. X., Yang, S. K., & Lv, T. (2019). Corrosion behavior of AZ91D magnesium alloy with a calcium-phosphate-vanadium composite conversion coating. Coatings, 9(6), 379.

    Article  CAS  Google Scholar 

  • Suryanarayana, C., Rao, K. C., & Kumar, D. (2008). Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coating, 63(1), 72–78.

    Article  CAS  Google Scholar 

  • Syu, J. H., Uan, J. Y., Lin, M. C., & Lin, Z. Y. (2013). Optically transparent Li-Al-CO3 layered double hydroxide thin films on an AZ31 Mg alloy formed by electrochemical deposition and their corrosion resistance in a dilute chloride environment. Corrosion Science, 68(1), 238–248.

    Article  CAS  Google Scholar 

  • Twite, R., & Bierwagen, G. P. (1998). Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Progress in Organic Coating, 33(2), 91–100.

    Article  CAS  Google Scholar 

  • Van Soestbergen, M., Baukh, V., Erich, S., Huinink, H., & Adan, O. (2014). Release of cerium dibutylphosphate corrosion inhibitors from highly filled epoxy coating systems. Progress in Organic Coating, 77(10), 1562–1568.

    Article  CAS  Google Scholar 

  • Vecellio, M. (2000). Opportunities and developments in fluoropolymeric coatings. Progress in Organic Coating, 40(1–4), 225–242.

    Article  CAS  Google Scholar 

  • Vega, J. M., Granizo, N., De La Fuente, D., Simancas, J., & Morcillo, M. (2011). Corrosion inhibition of aluminum by coatings formulated with Al-Zn-vanadate hydrotalcite. Progress in Organic Coating, 70(4), 213–219.

    Article  CAS  Google Scholar 

  • Vimalanandan, A., Lv, L. P., Tran, T. H., Landfester, K., Crespy, D., & Rohwerder, M. (2013). Redox-responsive self-healing for corrosion protection. Advanced Materials, 25(48), 6980–6984.

    Article  CAS  Google Scholar 

  • Wang, C., Zhu, S. L., Jiang, F., & Wang, F. H. (2009). Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance. Corrosion Science, 51(12), 2916–2923.

    Article  CAS  Google Scholar 

  • Wang, J., Li, D. D., Yu, X., Jing, X. Y., Zhang, M. L., & Jiang, Z. H. (2010). Hydrotalcite conversion coating on Mg alloy and its corrosion resistance. Journal of Alloys and Compounds, 494(1–2), 271–274.

    Article  CAS  Google Scholar 

  • Wang, X., Li, L. X., Xie, Z. H., & Yu, G. (2018). Duplex coating combining layered double hydroxide and 8-quinolinol layers on Mg alloy for corrosion protection. Electrochimica Acta, 283(1), 1845–1857.

    Article  CAS  Google Scholar 

  • Wang, Z. B., Guo, P., Heng, L. P., & Jiang, L. (2021a). Nano/submicrometer-emulsion oily wastewater treatment inspired by plant transpiration. Matter, 4(4), 1274–1286.

    Article  CAS  Google Scholar 

  • Wang, W., Yang, X. N., Wang, Y., Fan, Y., & Xu, J. N. (2021b). Endowing magnesium with the corrosion-resistance property through cross-linking polymerized inorganic sol-gel coating. RSC Advances, 11(8), 4365–4372.

    Article  CAS  Google Scholar 

  • Wei, H. G., Wang, Y. R., Guo, J., Shen, N. Z., Jiang, D. W., Zhang, X., Yan, X. R., Zhu, J. H., Wang, Q., Shao, L., Lin, H. F., Wei, S. Y., & Guo, Z. H. (2015). Advanced micro/nanocapsules for self-healing smart anticorrosion coatings. Journal of Materials Chemistry A, 3(2), 469–480.

    Article  CAS  Google Scholar 

  • White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., & Viswanathan, S. (2001). Autonomic healing of polymer composites. Nature, 409(6822), 794–797.

    Article  CAS  Google Scholar 

  • Winkleman, A., Svedberg, E., Schafrik, R., & Duquette, D. (2011). Preventing corrosion from wearing our future away-the potential for great discovery is pushing the field of corrosion science and engineering forward, and a grave threat that institutional knowledge might be lost is pulling the field backwards. Advanced Materials & Processes, 169(3), 26.

    Google Scholar 

  • Yabuki, A., & Nishisaka, T. (2011). Self-healing capability of porous polymer film with corrosion inhibitor inserted for corrosion protection. Corrosion Science, 53(12), 4118–4123.

    Article  CAS  Google Scholar 

  • Yan, H. J., Wang, J. H., Zhang, Y., & Hu, W. B. (2016). Preparation and inhibition properties of molybdate intercalated ZnAlCe layered double hydroxide. Journal of Alloys and Compounds, 678(1), 171–178.

    Article  CAS  Google Scholar 

  • Yang, K. H., Ger, M. D., Hwu, W. H., Sung, Y., & Liu, Y. C. (2007). Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy. Materials Chemistry and Physics, 101(2–3), 480–485.

    Article  CAS  Google Scholar 

  • Yoganandan, G., Premkumar, K. P., & Balaraju, J. N. (2015). Evaluation of corrosion resistance and self-healing behavior of zirconium-cerium conversion coating developed on AA2024 alloy. Surface and Coating Technology, 270(1), 249–258.

    Article  CAS  Google Scholar 

  • Yu, X., Wang, J., Zhang, M. L., Yang, L. H., Li, J. Q., Yang, P. P., & Cao, D. X. (2008). Synthesis, characterization and anticorrosion performance of molybdate pillared hydrotalcite/in situ created ZnO composite as pigment for Mg-Li alloy protection. Surface and Coating Technology, 203(3–4), 250–255.

    Article  CAS  Google Scholar 

  • Yu, X., Wang, J., Zhang, M. L., Yang, P. P., Yang, L. H., Cao, D. X., & Li, J. Q. (2009). One-step synthesis of lamellar molybdate pillared hydrotalcite and its application for AZ31 Mg alloy protection. Solid State Sciences, 11(2), 376–381.

    Article  CAS  Google Scholar 

  • Zeng, R. C., Liu, Z. G., Zhang, F., Li, S. Q., Cui, H. Z., & Han, E. H. (2014). Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A, 2(32), 13049–13057.

    Article  CAS  Google Scholar 

  • Zhai, W., Bai, L., Zhou, R., Fan, X., Kang, G., Liu, Y., & Zhou, K. (2021). Recent progress on wear-resistant materials: Designs, properties, and applications. Advanced Science (Weinh), 8(11), e2003739.

    Article  Google Scholar 

  • Zhang, F., Zhao, L., Chen, H., Xu, S., Evans, D. G., & Duan, X. (2008). Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum. Angewandte Chemie, 120(13), 2500–2503.

    Article  Google Scholar 

  • Zhang, R. Y., Cai, S., Xu, G. H., Zhao, H., Li, Y., Wang, X. X., Huang, K., Ren, M. G., & Wu, X. D. (2014). Crack self-healing of phytic acid conversion coating on AZ31 magnesium alloy by heat treatment and the corrosion resistance. Applied Surface Science, 313(1), 896–904.

    Article  CAS  Google Scholar 

  • Zhang, H., Luo, R. F., Li, W. J., Wang, J., Maitz, M. F., Wang, J., Wan, G. J., Chen, Y. Q., Sun, H., Jiang, C. X., Shen, R., & Huang, N. (2015). Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys. Corrosion Science, 94(1), 305–315.

    Article  CAS  Google Scholar 

  • Zhang, J. L., Gu, C. D., Tong, Y. Y., Yan, W., & Tu, J. P. (2016a). A smart Superhydrophobic coating on AZ31B magnesium alloy with self-healing effect. Advanced Materials Interfaces, 3(14), 1500694.

    Article  CAS  Google Scholar 

  • Zhang, C., Ou, Y., Lei, W. X., Wan, L. S., Ji, J., & Xu, Z. K. (2016b). CuSO4/H2O2-induced rapid deposition of Polydopamine coatings with high uniformity and enhanced stability. Angewandte Chemie (International Ed. in English), 55(9), 3054–3057.

    Article  CAS  Google Scholar 

  • Zhang, G., Wu, L., Tang, A. T., Zhang, S., Yuan, B., Zheng, Z. C., & Pan, F. S. (2017). A novel approach to fabricate protective layered double hydroxide films on the surface of anodized Mg-Al alloy. Advanced Materials Interfaces, 4(12), 1700163.

    Article  CAS  Google Scholar 

  • Zhang, F., Ju, P. F., Pan, M. Q., Zhang, D. W., Huang, Y., Li, G. L., & Li, X. G. (2018a). Self-healing mechanisms in smart protective coatings: A review. Corrosion Science, 144(1), 74–88.

    Article  CAS  Google Scholar 

  • Zhang, G., Wu, L., Tang, A. T., Ma, Y. L., Song, G. L., Zheng, D. J., Jiang, B., Atrens, A., & Pan, F. S. (2018b). Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corrosion Science, 139(1), 370–382.

    CAS  Google Scholar 

  • Zhang, H., Xie, L., Shen, X., Shang, T., Luo, R., Li, X., You, T., Wang, J., Huang, N., & Wang, Y. (2018c). Catechol/polyethyleneimine conversion coating with enhanced corrosion protection of magnesium alloys: Potential applications for vascular implants. Journal of Materials Chemistry B, 6(43), 6936–6949.

    Article  CAS  Google Scholar 

  • Zhang, B., Yao, R., Li, L., Wang, Y., Luo, R., Yang, L., & Wang, Y. (2019). Green tea polyphenol induced Mg2+-rich multilayer conversion coating: Toward enhanced corrosion resistance and promoted in situ Endothelialization of AZ31 for potential cardiovascular applications. ACS Applied Materials & Interfaces, 11(44), 41165–41177.

    Article  CAS  Google Scholar 

  • Zheng, Z., Schenderlein, M., Huang, X., Brownbill, N. J., Blanc, F., & Shchukin, D. (2015). Influence of functionalization of nanocontainers on self-healing anticorrosive coatings. ACS Applied Materials & Interfaces, 7(41), 22756–22766.

    Article  CAS  Google Scholar 

  • Zhou, W. Q., Shan, D. Y., Han, E. H., & Ke, W. (2008a). Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science, 50(2), 329–337.

    Article  CAS  Google Scholar 

  • Zhou, W., Shan, D., Han, E.-H., & Ke, W. (2008b). Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy. Corrosion Science, 50(2), 329–337.

    Article  CAS  Google Scholar 

  • Zhou, W. Q., Tang, W., Zhao, Q., Wu, S. W., & Han, E. H. (2011). Influence of additive on structure and corrosion resistance of manganese phosphate film on AZ91 magnesium alloy. Materials Science Forum, 686, 176–180.

    Article  CAS  Google Scholar 

  • Zhu, C., Fu, Y. J., Liu, C. A., Liu, Y., Hu, L. L., Liu, J., Bello, I., Li, H., Liu, N. Y., Guo, S. J., Huang, H., Lifshitz, Y., Lee, S. T., & Kang, Z. H. (2017). Carbon dots as fillers inducing healing/self-healing and anticorrosion properties in polymers. Advanced Materials, 29(32), 1701399.

    Article  CAS  Google Scholar 

  • Zong, Q. F., Wang, L. D., Sun, W., & Liu, G. C. (2014). Active deposition of bis (8-hydroxyquinoline) magnesium coating for enhanced corrosion resistance of AZ91D alloy. Corrosion Science, 89(1), 127–136.

    Article  CAS  Google Scholar 

  • Zucchi, F., Frignani, A., Grassi, V., Trabanelli, G., & Monticelli, C. (2007). Stannate and permanganate conversion coatings on AZ31 magnesium alloy. Corrosion Science, 49(12), 4542–4552.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Fu, X., Fan, Y. (2022). Self-Healing Mechanisms in Chemical Conversion Coatings. In: Saji, V.S., Sankara Narayanan, T.S.N., Chen, X. (eds) Conversion Coatings for Magnesium and its Alloys. Springer, Cham. https://doi.org/10.1007/978-3-030-89976-9_15

Download citation

Publish with us

Policies and ethics