Skip to main content
Log in

Strong and sustainable chemical bonding of TiO2 on nylon surface using 3-mercaptopropyltrimethoxysilane (3-MPTMS): analysis of antimicrobial and decomposition characteristics of contaminants

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, the antimicrobial and photodegradation properties of nylon fabric were improved by chemical treatment using 3-mercaptopropyltrimethoxysilane (3-MPTMS), which binds to photocatalyst TiO2, on a nylon fabric surface. The nylon fibers were impregnated with a solution containing isopropanol, titanium dioxide (TiO2), and 3-MPTMS at optimum ratios, and then stirred for 90 min. To remove the nonreactive impurities, the sample was washed twice with isopropanol and distilled water, and then dried. The TiO2 concentration, agitation temperature, and time were varied to determine suitable coating conditions for attachment to the nylon surface; the resulting properties were confirmed by scanning electron microscopy/energy dispersive spectroscopy. To evaluate the antimicrobial and photodegradation properties of TiO2, antimicrobial tests were conducted using the microbial reduction method and contact angle tests. The fiber contamination rate was measured by computer color matching after the sample was contaminated with methylene blue. Moreover, the antimicrobial activity of Staphylococcus aureus and Escherichia coli strains on the treated nylon was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shalaby, SE, Al-Balakocy, NG, Abo El-Ola, SM, Elshafei, AM, “Effect of Surface Activation of Nylon-6 Fabrics by Plasma and Grafting with Vinyl Monomers on its Functional Finishing with TiO2 Nanoparticles.” J. Appl. Sci. Res., 9 (3) 1743–1753 (2013)

    CAS  Google Scholar 

  2. Hong, K, Kang, T, “The Photocatalytic Degradation Properties of PET and Nylon 6 Fabrics Treated with Nano TiO2.” J. Text. Sci. Eng., 42 (4) 235 (2005)

    CAS  Google Scholar 

  3. Pathak, VM, “Review on the Current Status of Polymer Degradation: A Microbial Approach”.” Bioresour. Bioprocess., 4 15 (2017)

    Article  Google Scholar 

  4. Kang, C, Kim, S, Kim, S, Lee, J, Lee, J, Roh, C, Lee, J, “Antibacterial Cotton Fibers Treated with Silver Nanoparticles and Quaternary Ammonium Salts.” Carbohydr. Polym., 151 1012–1018 (2016)

    Article  CAS  Google Scholar 

  5. Kang, C, Ahn, D, Roh, C, Kim, S, Lee, J, “Development of Synergistic Antimicrobial Coating of p-Aramid Fibers Using Ag Nanoparticles and Glycidyltrimethylammonium Chloride (GTAC) Without the Aid of a Cross-Linking Agent.” Polymers, 9 357 (2017)

    Article  Google Scholar 

  6. Kamali, P, Talebian, N, “Sonochemically Sol–Gel Derived Coating of Textiles Using Heterojunction SnO2/ZnO/Chitosan Bionanocomposites: In Vitro Antibacterial Evaluation.” J. Coat. Technol. Res., 15 (5) 1133–1144 (2018)

    Article  CAS  Google Scholar 

  7. Kang, J, Han, J, Gao, Y, Gao, T, Lan, S, Xiao, L, Zhang, Y, Gao, G, Chokto, H, Dong, A, “Unexpected Enhancement in Antibacterial Activity of N-Halamine Polymers from Spheres to Fibers.” ACS Appl. Mater. Interfaces, 7 (31) 17516–17526 (2015)

    Article  CAS  Google Scholar 

  8. Lin, L, Wang, H, Jiang, W, Mkaouar, AR, Xu, P, “Comparison Study on Photocatalytic Oxidation of Pharmaceuticals by TiO2- Fe and TiO2-Reduced Graphene Oxide Nanocomposites Immobilized on Optical Fibers.” J. Hazard. Mater., 333 162–168 (2017)

    Article  CAS  Google Scholar 

  9. Pakdel, E, Daoud, WA, Afrin, T, Sun, L, Wang, X, “Enhanced Antimicrobial Coating on Cotton and Its Impact on UV Protection and Physical Characteristics.” Cellulose, 24 (9) 4003–4015 (2017)

    Article  CAS  Google Scholar 

  10. Montazer, M, Pakdel, E, “Reducing Photoyellowing of Wool Using Nano TiO2.” Photochem. Photobiol., 86 (2) 255–260 (2010)

    Article  CAS  Google Scholar 

  11. Daoud, WA, Self-Cleaning Materials and Surfaces. A Nanotechnology Approach. Wiley, West Sussex (2013)

    Book  Google Scholar 

  12. Mejia, MI, Marín, JM, Restrepo, G, Pulgarín, C, Kiwi, J, “Photocatalytic Evaluation of TiO2/Nylon Systems Prepared at Different Impregnation Times.” Catal. Today, 161 15–22 (2011)

    Article  CAS  Google Scholar 

  13. Kiwi, J, Pulgarin, C, “Innovative Self-Cleaning and Bactericide Textiles.” Catal. Today, 151 2–7 (2010)

    Article  CAS  Google Scholar 

  14. Pakdel, E, Daoud, WA, Wang, X, “Assimilating the Photo-Induced Functions of TiO2-Based Compounds in Textiles: Emphasis on the Sol-Gel Process.” Text. Res. J., 85 (13) 1404–1428 (2015)

    Article  CAS  Google Scholar 

  15. Yun, S, Kim, J, Jeong, E, Im, JS, Lee, Y, “Methylene Blue Photodegradation Properties of Anatase/Brookite Hybrid TiO2 Photocatalyst Prepared with Different Acid Catalysts.” Appl. Chem. Eng., 22 (1) 21–25 (2011)

    CAS  Google Scholar 

  16. Mejía, MI, Marín, JM, Restrepo, G, Pulgarin, C, Mielczarski, E, Mielczarski, J, Arroyo, Y, Lavanchy, JC, Kiwi, J, “Self-Cleaning Modified TiO2–Cotton Pretreated by UVC-light (185 nm) and RF-Plasma in Vacuum and also Under Atmospheric Pressure.” Appl. Catal. B, 91 (1–2) 481–488 (2009)

    Article  Google Scholar 

  17. Dastjerdi, R, Montazer, M, “A Review on the Application of Inorganic Nano-Structured Materials in the Modification of Textiles: Focus on Anti-Microbial Properties.” Colloids Surf. B, 79 (1) 5–18 (2010)

    Article  CAS  Google Scholar 

  18. Tung, WS, Daoud, WA, “Self-Cleaning Fibers Via Nanotechnology: A Virtual Reality.” J. Mater. Chem., 21 (22) 7858–7869 (2011)

    Article  CAS  Google Scholar 

  19. Choi, S, Yang, S, “A Study on the Reduction of VOCs Generated from Vehicle Interior Parts and Materials Using Visible-Light Responsive Photocatalyst.” Elastom. Compos., 48 (3) 209–215 (2013)

    Article  CAS  Google Scholar 

  20. Textor, T, Boris, M, “A Sol-Gel Based Surface Treatment for Preparation of Water Repellent Antistatic Textiles.” Appl. Surf. Sci., 256 (6) 1668–1674 (2010)

    Article  CAS  Google Scholar 

  21. Mahltig, B, Fiedler, D, Böttcher, H, “Antimicrobial Sol–Gel Coatings.” J. Sol–Gel Sci. Technol., 32 219–222 (2004)

    Article  CAS  Google Scholar 

  22. Hong, KH, Kang, TJ, “The Photocatalytic Degradation Properties of PET and Nylon 6 Fabrics Treated with Nano TiO2.” Textile Sci. Eng., 42 (4) 235–240 (2005)

    CAS  Google Scholar 

  23. Moafi, HF, Shojaie, AF, Zanjanchi, MA, “Titania and Titania Nanocomposites on Cellulosic Fibers: Synthesis, Characterization and Comparative Study of Photocatalytic Activity.” Chem. Eng. J., 166 413–419 (2011)

    Article  CAS  Google Scholar 

  24. Qi, K, Wang, X, Xin, JH, “Photocatalytic Self-Cleaning Textiles Based on Nanocrystalline Titanium Dioxide.” Text. Res. J., 81 (1) 101–110 (2011)

    Article  CAS  Google Scholar 

  25. Montazer, M, Pakdel, E, “Functionality of Nano Titanium Dioxide on Textiles with Future Aspects: Focus on Wool.” J. Photochem. Photobiol. C, 12 (4) 293–303 (2011)

    Article  CAS  Google Scholar 

  26. Radetić, Maja, “Functionalization of Textile Materials with TiO2 Nanoparticles.” J. Photochem. Photobiol. C, 16 62–76 (2013)

    Article  Google Scholar 

  27. Isaifan, RJ, Samara, A, Suwaileh, W, Johnson, D, Yiming, W, Abdallah, AA, Aïssa, B, “Improved Self-Cleaning Properties of an Efficient and Easy to Scale Up TiO2 Thin Films Prepared by Adsorptive Self-Assembly.” Sci. Rep., 7 9466 (2017)

    Article  Google Scholar 

  28. Amorim, SM, Suave, J, Andrade, L, Mendes, AM, José, J, Moreira, H, Regina, FPM, “Towards an Efficient and Durable Self-Cleaning Acrylic Paint Containing TiO2 Mesoporous Microspheres.” Prog. Org. Coat., 118 48–56 (2018)

    Article  CAS  Google Scholar 

  29. Yang, SB, Choi, WS, Hyun, JM, Shin, JC, Choi, JH, Yeum, JH, “Electrospinning Fabrication of Poly(vinyl alcohol)/Pullulan/TiO2 Nanofibers.” Text. Colorat. Finish., 26 (3) 195–200 (2014)

    Article  Google Scholar 

  30. Mahltig, B, Miao, H, “Microwave-Assisted Preparation of Photoactive TiO2 on Textile Substrates.” J. Coat. Technol. Res., 14 721–733 (2017)

    Article  CAS  Google Scholar 

  31. Yuranova, T, Mosteo, R, Bandara, J, Laub, D, Kiwi, J, “Self-Cleaning Cotton Textiles Surfaces Modified by Photoactive SiO2/TiO2 Coating.” J. Mol. Catal. A Chem., 244 (1–2) 160–167 (2006)

    Article  CAS  Google Scholar 

  32. Pakdel, E, Daoud, WA, “Self-Cleaning Cotton Functionalized with TiO2/SiO2: Focus on the Role of Silica.” J. Colloid Interface Sci., 401 1–7 (2013)

    Article  CAS  Google Scholar 

  33. Mahltig, B, Gutmann, E, Reibold, M, Meyer, DC, “Synthesis of Ag and Ag/SiO2 Sols by Solvothermal Method and Their Bactericidal Activity.” J. Sol–Gel. Sci. Technol., 51 (2) 204–214 (2009)

    Article  CAS  Google Scholar 

  34. Wu, D, Long, M, Zhou, J, Cai, W, Zhu, X, Chen, C, Wu, Y, “Synthesis and Characterization of Self-Cleaning Cotton Fabrics Modified by TiO2 Through a Facile Approach.” Surf. Coat. Technol., 203 (24) 3728–3733 (2009)

    Article  CAS  Google Scholar 

  35. Daoud, WA, Leung, SK, Tung, WS, Xin, JH, Cheuk, K, Qi, K, “Self-Cleaning Keratins.” Chem. Mater., 20 (4) 1242–1244 (2008)

    Article  CAS  Google Scholar 

  36. Peter, A, Mihaly-Cozmuta, A, Nicula, C, Mihaly-Cozmuta, L, Vulpoi, A, Baia, L, “Fabric Impregnated with TiO2 Gel with Self-Cleaning Property.” Int. J. Appl. Ceram. Technol., 16 (2) 666–681 (2018)

    Article  Google Scholar 

  37. Parvinzadeh Gashti, M, Pakdel, E, Alimohammadi, F, “Nanotechnology-Based Coating Techniques for Smart Textiles.” In: Hu, J (ed.) Active Coatings for Smart Textiles, pp. 243–268. Woodhead Publishing, Duxford (2016)

    Chapter  Google Scholar 

  38. Tang, AYI, Wang, YM, Lee, CH, Kan, C, “Computer Color Matching and Levelness of PEG-Based Reverse Micellar Decamethyl Cyclopentasiloxane (D5) Solvent-Assisted Reactive Dyeing on Cotton Fiber.” Appl. Sci., 7 682 (2017)

    Article  Google Scholar 

  39. Descostes, M, Mercier, F, Thromat, N, Beaucaire, C, Gautier-Soyer, M, “Use of XPS in the Determination of Chemical Environment and Oxidation State of Iron and Sulfur Samples: Constitution of a Data Basis in Binding Energies for Fe and S Reference Compounds and Applications to the Evidence of Surface Species of an Oxidized Pyrite in a Carbonate Medium.” Appl. Surf. Sci., 165 (4) 296–298 (2000)

    Article  Google Scholar 

  40. Tung, WS, Daoud, WA, “Photocatalytic Self-Cleaning Keratins: A Feasibility Study.” Acta Biomater., 5 (1) 50–56 (2009)

    Article  CAS  Google Scholar 

  41. Kubacka, A, Diez, MS, Rojo, D, Bargiela, R, Cilrdia, S, Zapico, I, Albar, JP, Barbas, C, Martins dos Santos, VAP, Fernández-Garcia, M, Ferrer, M, “Understanding the Antimicrobial Mechanism of TiO2-Based Nanocomposite Films in a Pathogenic Bacterium.” Sci. Rep., 4 4134 (2014)

    Article  Google Scholar 

  42. Xing, Y, Li, X, Zhang, L, Xu, Q, Che, Z, Li, W, Bai, Y, Li, K, “Effect of TiO2 Nanoparticles on the Antibacterial and Physical Properties of Polyethylene-Based Film.” Prog. Org. Coat., 73 219–224 (2012)

    Article  CAS  Google Scholar 

  43. Dariani, RS, Esmaeili, A, Mortezaali, A, Dehghanpour, S, “Photocatalytic Reaction and Degradation of Methylene Blue on TiO2 Nano-Sized Particles.” Int. J. Light Electron Opt., 127 (18) 7143–7154 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Yeungnam University Research Grant, 2018, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chankyu Kang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, G., Lee, J. & Kang, C. Strong and sustainable chemical bonding of TiO2 on nylon surface using 3-mercaptopropyltrimethoxysilane (3-MPTMS): analysis of antimicrobial and decomposition characteristics of contaminants. J Coat Technol Res 16, 1399–1409 (2019). https://doi.org/10.1007/s11998-019-00222-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00222-5

Keywords

Navigation