Skip to main content
Log in

Extraction and Determination of Protein from Edible Oil Using Aqueous Biphasic Systems of Ionic Liquids and Salts

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study aimed to develop the extraction method of protein from edible oil for rapid detection. Firstly, aqueous biphasic systems (ABS) based on six hydrophilic ionic liquids (ILs) and three salts were developed and the phase diagram was drawn by turbidimetric point method. The binodal curves were fitted to the Merchuk equation. On this basis, the ABS composed of IL and salt were applied to extract protein from edible oil. The type of IL or salt, IL concentration, salt concentration, oil mass, extraction pH, and temperature on the extraction efficiency of protein from oil were investigated. The results showed that the optimum conditions for the extraction of protein from edible oil with ABS were as follows: 50% (w/v) K3PO4, 20% (w/v) [Bmim]Cl at 35 ℃, and pH 9.0. Under the optimal conditions, the protein extraction efficiency was almost 100%. Also, the extraction mechanism was studied and the main driving factors of protein extraction may be the hydrophobicity, electrostatic interaction, and salting-out between molecules. Finally, the method was used to detect the commercial edible oils from different sources. The results showed that the ABS could also be used to extract protein from other edible oils. In conclusion, the IL-based ABS method is simple and rapid for protein extraction from edible oil, and will highlight novel possibilities in the large-scale separation and purification of protein from oily solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Belchior, D. C. V., Quental, M. V., Pereira, M. M., Mendonça, C. M. N., Duarte, I. F., & Freire, M. G. (2020). Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic systems in the extraction of ovalbumin and lysozyme. Separation and Purification Technology, 233, 116019.

    Article  CAS  Google Scholar 

  • Bettaieb Rebey, I., Bourgou, S., Detry, P., Wannes, W. A., Kenny, T., Ksouri, R., Sellami, I. H., & Fauconnier, M. (2019). Green extraction of fennel and anise edible oils using bio-based solvent and supercritical fluid: Assessment of chemical composition, antioxidant property, and oxidative stability. Food and Bioprocess Technology, 12, 1798–1807.

    Article  CAS  Google Scholar 

  • Capela, E. V., Quental, M. V., Domingues, P., Coutinho, J. A. P., & Freire, M. G. (2017). Effective separation of aromatic and aliphatic amino acid mixtures using ionic-liquid-based aqueous biphasic systems. Green Chemistry, 19(8), 1850–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claudio, A. F. M., Swift, L., Hallett, J. P., Welton, T., Coutinho, J. A. P., & Freire, M. G. (2014). Extended scale for the hydrogen-bond basicity of ionic liquids. Physical Chemistry Chemical Physics, 16, 6593–6601.

    Article  CAS  PubMed  Google Scholar 

  • Chong, K. Y., Stefanova, R., Zhang, J., & Brooks, M. S. (2020). Extraction of bioactive compounds from haskap leaves (lonicera caerulea) using salt/ethanol aqueous two-phase flotation. Food and Bioprocess Technology, 13, 2131–2144.

    Article  CAS  Google Scholar 

  • Crevel, R. W. R., Kerhoff, M. A. T., & Koning, M. M. G. (2000). Allergenicity of refined vegetable oils. Food and Chemical Toxicology, 38, 385–393.

    Article  CAS  PubMed  Google Scholar 

  • Deive, F. J., Rodríguez, A., Marrucho, I. M., & Rebelo, L. P. (2011). Aqueous biphasic systems involving alkylsulfate-based ionic liquids. The Journal of Chemical Thermodynamics, 43, 1565–1572.

    Article  CAS  Google Scholar 

  • Dreyer, S., Salim, P., & Kragl, U. (2009). Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochemical Engineering Journal, 46(2), 176–185.

    Article  CAS  Google Scholar 

  • Dupont, J., Consorti, C. S., Suarez, P. A. Z., Souza, R. F. D., & Wolff, S. (2002). Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Organic Syntheses, 79(6), 236–243.

    CAS  Google Scholar 

  • Errahali, Y., Morisset, M., Moneret-Vautrin, D. A., Kanny, G., Metche, M., Nicolas, J. P., & Frémont, S. (2002). Allergen in soy oils. Allergy, 59, 648–649.

    Article  Google Scholar 

  • Ferreira, A. M., Cláudio, A. F. M., Válega, M., Domingues, F. M. J., Silvestre, A. J. D., Rogers, R. D., Coutinho, J. A. P., & Freire, M. G. (2017). Switchable (pH-driven) aqueous biphasic systems formed by ionic liquids as integrated production–separation platforms. Green Chemistry, 19, 2768–2773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freire, M. G., Claudio, A. F., Araujo, J. M., Coutinho, J. A., Marrucho, I. M., Canongia, L. J., & Rebelo, L. P. N. (2012). Aqueous biphasic systems: A boost brought about by using ionic liquids. Chemical Society Reviews, 41(14), 4966–4995.

    Article  CAS  PubMed  Google Scholar 

  • Gámiz-Gracia, L., & Castro, M. D. L. D. (2000). Continuous subcritical water extraction of medicinal plant essential oil: Comparison with conventional techniques. Talanta, 51(6), 1179–1185.

    Article  PubMed  Google Scholar 

  • Gutowski, K. E., Broker, G. A., Willauer, H. D., Huddleston, J. G., Swatloski, R. P., & Holbrey, J. D. (2003). Controlling the aqueous miscibility of ionic liquids: Aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. Journal of the American Chemical Society, 125(22), 6632–6633.

    Article  CAS  PubMed  Google Scholar 

  • Han, J., Wang, Y., Kang, W., Li, C., Yan, Y., Pan, J., & Xie, X. (2010). Phase equilibrium and macrolide antibiotics partitioning in real water samples using a two-phase system composed of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and an aqueous solution of an inorganic salt. Microchimica Acta, 169(1–2), 15–22.

    Article  CAS  Google Scholar 

  • He, A., Dong, B., Feng, X., & Yao, S. (2018). Extraction of bioactive ginseng saponins using aqueous two-phase systems of ionic liquids and salts. Separation and Purification Technology, 196, 270–280.

    Article  CAS  Google Scholar 

  • He, C., Li, S., Liu, H., Li, K., & Liu, F. (2005). Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt. Journal of Chromatography A, 1082(2), 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Konstantza, T. (2012). Separation of poly- and disaccharides by biphasic systems based on ionic liquids. Separation and Purification Technology, 89, 57–65.

    Article  Google Scholar 

  • Li, X. M., Tian, S. L., Pang, Z. C., Shi, J. Y., Feng, Z. S., & Zhang, Y. M. (2009). Extraction of cuminum cyminum essential oil by combination technology of organic solvent with low boiling point and steam distillation. Food Chemistry, 115(3), 1114–1119.

    Article  CAS  Google Scholar 

  • Li, Y., Yang, W., Chung, S. Y., Chen, H., Ye, M., Teixeira, A. A., Gregory, J. F., Welt, B. A., & Shriver, S. (2013). Effect of pulsed ultraviolet light and high hydrostatic pressure on the antigenicity of almond protein extracts. Food and Bioprocess Technology, 6, 431–440.

    Article  Google Scholar 

  • Lin, X., Wang, Y., Zeng, Q., Ding, X., & Chen, J. (2013). Extraction and separation of proteins by ionic liquid aqueous two-phase system. The Analyst, 21(138), 6445–6453.

    Article  Google Scholar 

  • Lu, Y., Lu, W., Wang, W., Guo, Q., & Yang, Y. (2011). Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system. Talanta, 85(3), 1621–1626.

    Article  CAS  PubMed  Google Scholar 

  • Marchel, M., João, K. G., & Marrucho, I. M. (2019). On the use of ionic liquids as adjuvants in PEG-(NH4)2SO4 aqueous biphasic systems: Phase diagrams behavior and the effect of IL concentration on myoglobin partition. Separation and Purification Technology, 210, 710–718.

    Article  CAS  Google Scholar 

  • Maugeri, L. (2009). Squeezing more oil from the ground. Scientific American, 301(4), 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Merchuk, J. C., Andrews, B. A., & Asenjo, J. A. (1998). Aqueous two-phase systems for protein separation: Studies on phase inversion. Journal of Chromatography B, 711, 285–293.

    Article  CAS  Google Scholar 

  • Negar Gharbi, M. L. (2018). Effect of processing on aggregation mechanism of egg white proteins. Food Chemistry, 252, 126–133.

    Article  PubMed  Google Scholar 

  • Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., & Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: Effects in yield and functional properties of protein isolates. Food and Bioprocess Technology, 10, 543–555.

    Article  CAS  Google Scholar 

  • Olszewski, A., Pons, L., Moutete, F., Aimone-Gastin, I., Kanny, G., Moneret-Vautrin, D. A., & Gueant, J. L. (1998). Isolation and characterization of proteic allergens in refined peanut oil. Clinical and Experimental Allergy, 28, 850–859.

    Article  CAS  PubMed  Google Scholar 

  • Palsikowski, P. A., Besen, L. M., Santos, K. A., Silva, C. D., & Silva, E. A. D. (2019). Supercritical CO2 oil extraction from bauhinia forficata link subsp. pruinosa leaves: Composition, antioxidant activity and mathematical modeling. Journal of Supercritical Fluids, 153, 104588.

    Article  CAS  Google Scholar 

  • Paschke, A., Zunker, K., Wigotzki, M., & Steinhart, H. (2001). Determination of the IgE binding activity of soy lecithin and refined and non-refined soybean oils. Journal of Chromatography b: Biomedical Sciences and Applications, 756, 249–254.

    Article  CAS  PubMed  Google Scholar 

  • Pei, Y., Wang, J., Wu, K., Xuan, X., & Lu, X. (2009). Ionic liquid-based aqueous two-phase extraction of selected proteins. Separation and Purification Technology, 64(3), 288–295.

    Article  CAS  Google Scholar 

  • Pereira, J. F. B., Rebelo, L. P. N., Rogers, R. D., Coutinho, J. A. P., & Freire, M. G. (2013). Combining ionic liquids and polyethylene glycols to boost the hydrophobic–hydrophilic range of aqueous biphasic systems. Physical Chemistry Chemical Physics, 15(45), 19580.

    Article  CAS  PubMed  Google Scholar 

  • Raghavarao, K. S. M. S., Ranganathan, T. V., Srinivas, N. D., & Barhate, R. S. (2003). Aqueous two phase extraction-an environmentally benign technique. Clean Technologies & Environmental Policy, 5(2), 136–141.

    Article  CAS  Google Scholar 

  • Requejo, P. F., Velho, P., Gomez, E., & Macedo, E. A. (2020). Study of liquid-liquid equilibrium of aqueous two-phase systems based on ethyl lactate and partitioning of rutin and quercetin. Industrial & Engineering Chemistry Research, 59(48), 21196–21204.

    Article  CAS  Google Scholar 

  • Rigby, N. M., Sancho, A. I., Salt, L. J., Foxall, R., Taylor, S., Raczynski, A., Cochrane, S. A., Crevel, R. W. R., & Mills, E. N. C. (2011). Quantification and partial characterization of the residual protein in fully and partially refined commercial soybean oils. Journal of Agricultural and Food Chemistry, 59, 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  • Roselló-Soto, E., Barba, F. J., Parniakov, O., Galanakis, C. M., Lebovka, N., Grimi, N., & Vorobiev, E. (2015). High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food and Bioprocess Technology, 8, 885–894.

    Article  Google Scholar 

  • Saba, H., Zhu, X., Chen, Y., & Zhang, Y. (2015). Determination of physical properties for the mixtures of [BMIM]Cl with different organic solvents. Chinese Journal of Chemical Engineering, 23(5), 804–811.

    Article  CAS  Google Scholar 

  • Silvestre, M. P. C., Carreira, R. L., Silva, M. R., Corgosinho, F. C., Monteiro, M. R. P., & Morais, H. A. (2012). Effect of pH and temperature on the activity of enzymatic extracts from pineapple peel. Food and Bioprocess Technology, 5, 1824–1831.

    Article  CAS  Google Scholar 

  • Smith, P. K., Krohn, R. I., & Hermanson, G. T. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85.

    Article  CAS  PubMed  Google Scholar 

  • Tirgarian, B., Farmani, J. & Milani, J.M. (2019). Enzyme-assisted aqueous extraction of oil and protein hydrolysate from sesame seed. Food Measure, 13, 2118–2129.

  • Ventura, S. P., Neves, C. M., Freire, M. G., Marrucho, I. M., Oliveira, J., & Coutinho, J. A. (2009). Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems. Journal of Physical Chemistry B, 113, 9304–9310.

    Article  CAS  Google Scholar 

  • Wei, X. L., Wang, X. H., Ping, A. L., Du, P. P., Sun, D. Z., Zhang, Q. F., & Liu, J. (2013). Formation and characteristics of aqueous two-phase systems formed by a cationic surfactant and a series of ionic liquids. Journal of Chromatography B, 939, 1–9.

    Article  CAS  Google Scholar 

  • Weingärtner, H., & Schröer, W. (1995). Liquid-liquid phase separations and critical behavior of electrolyte solutions driven by long-range and short-range interactions. Studies in Physical and Theoretical Chemistry, 83, 107–114.

    Article  Google Scholar 

  • Wensing, M., Penninks, A. H., Hefle, S. L., Koppelman, S. J., Bruijnzeel-Koomen, C. A., & Knulst, A. C. (2002). The distribution of individual threshold doses eliciting allergic reactions in a population with peanut allergy. Journal of Allergy & Clinical Immunology, 110(9), 915–920.

    Article  Google Scholar 

  • Widyarani, R., & E., Sandersa, J. P. M., & Bruinsa, M. E. (2014). Biorefinery methods for separation of protein and oil fractions from rubber seed kernel. Industrial Crops and Products, 62, 323–332.

    Article  CAS  Google Scholar 

  • Yan, J., Ma, H., Pei, J., Wang, Z., & Wu, J. (2014). Facile and effective separation of polysaccharides and proteins from Cordyceps sinensis mycelia by ionic liquid aqueous two-phase system. Separation and Purification Technology, 135, 278–284.

    Article  CAS  Google Scholar 

  • Yang, H., Chen, L., Zhou, C., Yu, X., Yagoub, E. G. A., & Ma, H. (2018). Improving the extraction of l-phenylalanine by the use of ionic liquids as adjuvants in aqueous biphasic systems. Food Chemistry, 245(apr.15), 346–352.

  • Yang, J. Y. J., Peng, B. P. B., Wang, M. W. M., Zou, X. Z. X., Yin, Y. Y. Y., & Deng, Z. D. Z. (2019). Characteristics and emulsifying properties of two protein fractions derived from the emulsion formed during aqueous extraction of camellia oil. Food Hydrocolloids, 87, 644–652.

    Article  CAS  Google Scholar 

  • Zafarani-Moattar, M. T., & Hamzehzadeh, S. (2011). Partitioning of amino acids in the aqueous biphasic system containing the water-miscible ionic liquid 1-butyl-3-methylimidazolium bromide and the water-structuring salt potassium citrate. Biotechnology Progress, 27(4), 986–997.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., & Zhang, L. (2012). Application of ionic liquids in extraction technology. Chemistry, 75(11), 1001–1008.

    CAS  Google Scholar 

Download references

Funding

This work was supported by Zhejiang Provincial Science and Technology Project (Grant No. 2018C02016 and 2021F1065-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Zhou.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, Y., Qin, Y. et al. Extraction and Determination of Protein from Edible Oil Using Aqueous Biphasic Systems of Ionic Liquids and Salts. Food Bioprocess Technol 15, 190–202 (2022). https://doi.org/10.1007/s11947-021-02738-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02738-4

Keywords

Navigation