Skip to main content
Log in

Effect of pH and Temperature on the Activity of Enzymatic Extracts from Pineapple Peel

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study was carried out to characterize a crude extract from pineapple peel after precipitation by three methods with the aim of obtaining an enzymatic extract from agro-industrial waste. The characterization of these extracts involved the determination of both protein content and specific protease activities. The effects of pH and temperature on specific protease activity and on the stability of the extracts were also evaluated. The optimal values of specific activity for the crude extract (CE) were pH 6.0 (5.76 U mg−1 protein) and 7.0 (5.71 U mg−1 protein) and a temperature of 70 °C (16 U mg−1 protein). The average values for the relative specific activity were 17.4% (pH 3.0 to 9.0) and 42.7% (at 30, 50, and 70 °C). The ethanolic extract had the highest specific activity (10.7 U mg−1 protein) in comparison to the best results obtained for the isoelectric precipitation (7.7 U mg−1 protein) and the ammonium sulfate precipitation (4.7 U mg−1 protein). Moreover, the ethanolic extract was more stable than the CE, retaining 60.9% and 53.7% of the initial specific activity during the evaluation of the stability at different pH and temperature values, respectively. The optimal values of pH and temperature were almost the same for the crude and the ethanolic extracts. In addition, the ethanolic extract was more stable than the CE in the experimental conditions tested in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandrino, A. M., Faria, H. G., Souza, C. G. M., & Peralta, R. M. (2007). Aproveitamento do resíduo de laranja para a produção de enzimas lignocelulolíticas por Pleurotus ostreatus (Jack:Fr). Ciência e Tecnologia de Alimentos, 27, 364–368.

    Article  CAS  Google Scholar 

  • Association of Official Agricultural Chemists. (1995). Official methods of analysis of AOAC International (16th ed.). Arlington: AOAC International.

    Google Scholar 

  • Arroyo-Reyna, A., & Hernández-Arana, A. (1995). The thermal denaturation of stem bromelain is consistent with an irreversible two-state model. Biochimica et Biophysica Acta, 1248, 123–128.

    Article  Google Scholar 

  • Bertevello, L. C. (2001). Estudo do processo de recuperação e separação de bromelina utilizando sistema de duas fases aquosas em micro-coluna de extração. Tese de Doutorado. Campinas, BRA: Universidade Estadual de Campinas.

    Google Scholar 

  • Bickerstaff, G. F., & Zhou, H. (1993). Protease activity and autodigestion (autolysis) assays using Coomassie Blue Dye binding. Analytical Biochemistry, 210, 155–158.

    Article  CAS  Google Scholar 

  • Castro, H. F., Mendes, A. A., Santos, J. C., & Aguiar, C. L. (2004). Modificação de óleos e gorduras por biotransformação. Química Nova, 27, 146–156.

    Article  Google Scholar 

  • César, A. C. (2005). Análise de viabilidade econômica de um processo de extração e purificação da bromelina do abacaxi. Tese de Doutorado. Campinas, BRA: Universidade Estadual de Campinas.

    Google Scholar 

  • Coelho, M. A. S., Leite, S. G. F., Rosa, M. F., & Furtado, A. A. L. (2001). Aproveitamento de resíduos agroindustriais: produção de enzimas a partir da casca de coco verde. Boletim do Centro de Pesquisa de Processamento de Alimentos, 19, 33–42.

    Google Scholar 

  • Feijoo-Siota, L., & Villa, T. G. (2010). Native and biotechnologically engineered plant proteases with industrial applications. Food and Bioprocess Technology. doi:10.1007/s11947-010-0431-4.

  • Golgher, M. (1977). Otimização do processo de obtenção da bromelina em escala de laboratório. Dissertação de Mestrado. Belo Horizonte: Universidade Federal de Minas Gerais.

    Google Scholar 

  • Gupta, P., Khan, R. H., & Saleemuddin, M. (2003). Binding of antibromelain monomeric Fab improves the stability of stem bromelain against inactivation. Biochimica et Biophysica Acta, 1646, 131–135.

    CAS  Google Scholar 

  • Hale, L. P., Greer, P. K., Trinh, C. T., & James, C. L. (2005). Proteinase activity and stability of natural bromelain preparations. International Immunopharmacology, 5, 783–793.

    Article  CAS  Google Scholar 

  • Hebbar, H. U., Sumana, B., & Raghavarao, K. S. M. S. (2008). Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes. Bioresource Technology, 99, 4896–4902.

    Article  Google Scholar 

  • Hebbar, U. H., Sumana, B., Hemavathi, A. B., & Raghavarao, K. S. M. S. (2010). Separation and purification of bromelain by reverse micellar extraction coupled ultrafiltration and comparative studies with other methods. Food and Bioprocess Technology. doi:10.1007/s11947-010-0395-4.

  • Heinicke, R. M., & Gortner, W. H. (1957). Stem bromelain—a new protease preparation from pineapple plants. Economic Botany, 11, 225–234.

    Article  CAS  Google Scholar 

  • Kumar, C. G. (2002). Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus. Letters in Applied Microbiology, 34, 13–17.

    Article  CAS  Google Scholar 

  • Levleva, E. V., Zimacheva, A. V., Huan, P. H., Nhan, V. H., & Mosolov, V. V. (1990). Proteinases from proliferous tops of pineapple fruits. Prikladnaya Biokhimiya I Mikrobiologiya, 27, 639–645.

    Google Scholar 

  • Liang, H. H., Huang, H. H., & Kwok, K. C. (1999). Properties of tea-polyphenol-complexed bromelain. Food Research International, 32, 545–551.

    Article  CAS  Google Scholar 

  • Lopes, F. L. G., Júnior, J. B. S., Santana, J. C. C., Souza, R. R., & Tambourgi, E. B. (2005). Utilização de membranas planas na concentração de enzimas bromelinas da polpa de abacaxi (Ananas comosos L.). Revista Brasileira de Produtos Agroindustriais, 7, 33–38.

    Google Scholar 

  • Ota, S., Moore, S., & Stein, W. H. (1964). Preparation and chemical properties of purified stem and fruit bromelains. Biochemistry, 3, 180–185.

    Article  CAS  Google Scholar 

  • Pimentel-Gomes, F. (2000). Curso de estatística experimental (14ª edição). Piracicaba: Nobel.

    Google Scholar 

  • Piza I.M.T. (1997). Poliaminas e micropropagação do abacaxizeiro (Ananás comosus L.) cv. Smooth Cayenne. Dissertação de Mestrado. Universidade Estadual Paulista, São Paulo.

  • Santos S.A. (1985). Efeito do tempo na composição físico-química, química e na atividade da bromelina do caule do abacaxizeiro Ananás comosus (L.) merr. cv. Pérola armazenado em condições com e sem refrigeração. Dissertação de Mestrado. Universidade Federal de Lavras, Lavras.

  • Santos R.C. (2005). Obtenção de proteases de Penicilium candidum e seu emprego no preparo de hidrolisados protéicos de soro de leite com baixo teor de fenilalanina. Dissertação de Mestrado. Universidade Federal de Minas Gerais, Belo Horizonte.

  • Scopes, R. K. (1994). Protein purification: principles and practice (3rd ed.). New York: Springer.

    Google Scholar 

  • Sgarbieri, V. C. (1996). Proteínas em alimentos protéicos. São Paulo: Varela.

    Google Scholar 

  • Silva R.A. (2008). Caracterização físico-química e purificação da bromelina do Ananas comosus (l.) merrill (Abacaxi-bromeliaceae). Dissertação de Mestrado. Universidade Federal de Pernambuco, Pernambuco.

  • Singh, L. R., Devi, Y. R., & Devi, S. K. (2003). Enzymological characterization of pineapple extract for potential application in oak tasar (Antheraea proylei J.) silk cocoon cooking and reeling. Electronic Journal of Biotechnology, 6, 198–207.

    Article  Google Scholar 

  • Sriwatanapongse, A., Balaban, M., & Teixeira, A. (2000). Thermal inactivation kinetics of bromelain in pineapple juice. American Society of Agricultural and Biological Engineers, 43, 1703–1708.

    CAS  Google Scholar 

  • Suh, H. J., Lee, H., Cho, H. Y., & Yang, H. C. (1992). Purification and characterization of bromelain isolated from pineapple. Journal of the Korean Agricultural Chemical Society, 35, 300–307.

    CAS  Google Scholar 

  • Tremacoldi, C. R., & Carmona, E. C. (2005). Production of extracellular alkaline proteases by Aspergillus clavatus. World Journal of Microbiology & Biotechnology, 21, 169–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CAPES, CNPq, and FAPEMIG for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marialice Pinto Coelho Silvestre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestre, M.P.C., Carreira, R.L., Silva, M.R. et al. Effect of pH and Temperature on the Activity of Enzymatic Extracts from Pineapple Peel. Food Bioprocess Technol 5, 1824–1831 (2012). https://doi.org/10.1007/s11947-011-0616-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0616-5

Keywords

Navigation