Skip to main content
Log in

Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Demand for value-added spices all year round has warranted suitable post-harvest processing, since most are non-perennial by nature and perishable owing to enzymatic or maillard reactions and pathogenic microbial contamination. Drying involves the minimization of biologically active water up to the safe water activity level and increases the shelf life. An optimized drying technique is needed to be chosen critically because one particular drying condition suitable for a group of spices may be detrimental for others. Therefore, the current review emphasizes the permissible ranges of influencing operating parameters, comparative effects of several drying technologies on drying characteristics, and quality attributes of spices. The paper also provided an up-to-date technological advancement in novel hybrid and staged drying to alleviate the shortcomings of a solo drying technique. As drying is an energy-intensive process, pre-drying treatments and intermittent phenomena have also been explored for energy saving with better quality retention. The paper also highlights the significance of thin layer modeling for predicting the moisture transport phenomena during drying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

abs:

absolute

DHA:

dehumidified air drying

Deff :

effective moisture diffusivity

EMC:

equilibrium moisture content

FBD:

fluidized bed drying

FC-HPD:

forced convective-heat pump stage drying

FCTD:

forced convective tray drying

FD:

freeze drying

FIR:

far-infrared drying

FIRMVD:

far-infrared microwave vacuum drying

GH:

greenhouse drying

h:

hour

HA:

hot air oven drying

HA-FBD:

hot air-fluidized bed stage drying

HP:

heat pump drying

HP-FBD:

heat pump-fluidized bed stage drying

IMCTD:

intermittent microwave convective tray drying

IR:

infrared drying

IRCTD:

infrared convective tray drying

LPSSD:

low-pressure superheated steam drying

MC:

moisture content

min:

minute

MR:

moisture ratio

MW:

microwave drying

MWCTD:

microwave convective tray drying

MWFBD:

microwave fluidized bed drying

MWFD:

microwave freeze drying

MWIR:

microwave infrared drying

MWVD:

microwave vacuum dryer

MWV-HA:

microwave vacuum-hot air stage drying

OS:

open sun drying

PPO:

polyphenoloxidase

POD:

peroxidase

PR:

pulse ratio

RH:

relative humidity

s:

second

STD:

solar tray drying

TFC:

total flavonoid content

TPC:

total phenolic content

USCTD:

ultrasound convective tray drying

USHA:

ultrasound hot air oven drying

VD:

vacuum drying

VFD:

vacuum freeze drying

V-MWFBD:

variable microwave fluidized bed drying

wb:

wet basis

w/v:

weight per volume

References

  • Abano, E. E., Ma, H., & Qu, W. (2011). Effects of pretreatment on the drying characteristics and chemical composition of garlic slices in a convective hot air dryer. Journal of Agriculture and Food Technology, 1, 50–58.

    Google Scholar 

  • Abasi, S., Mousavi, S., Mohebi, M., & Kiani, S. (2009). Effect of time and temperature on moisture content, shrinkage, and rehydration of dried onion. Iranian Journal of Chemical Engineering, 6(3), 57–70.

    Google Scholar 

  • Abbasi Souraki, B., & Mowla, D. (2008). Experimental and theoretical investigation of drying behaviour of garlic in an inert medium fluidized bed assisted by microwave. Journal of Food Engineering, 88(4), 438–449.

    Article  Google Scholar 

  • Ade-Omowaye, B. I. O., Rastogi, N. K., Angersbach, A., & Knorr, D. (2001). Effects of high hydrostatic pressure or high intensity electrical field pulse pre-treatment on dehydration characteristics of red paprika. Innovative Food Science & Emerging Technologies, 2(1), 1–7.

    Article  CAS  Google Scholar 

  • Akpinar, E. K. (2019). The effects of some exergetic indicators on the performance of thin layer drying process of long green pepper in a solar dryer. Heat and Mass Transfer, 55(2), 299–308.

    Article  Google Scholar 

  • Al-Muhtaseb, A. H., McMinn, W. A. M., & Magee, T. R. A. (2002). Moisture sorption isotherm characteristics of food products: A review. Food and Bioproducts Processing, 80(2), 118–128.

    Article  CAS  Google Scholar 

  • An, K., Zhao, D., Wang, Z., Wu, J., Xu, Y., & Xiao, G. (2016). Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chemistry, 197, 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  • Ananno, A. A., Masud, M. H., Dabnichki, P., & Ahmed, A. (2020). Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy, 196, 270–286.

    Article  Google Scholar 

  • Arslan, D., & Özcan, M. M. (2011). Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food and Bioproducts Processing, 89(4), 504–513.

    Article  Google Scholar 

  • Asiah, N., Djaeni, M., & Hii, C. L. (2017). Moisture transport mechanism and drying kinetic of fresh harvested red onion bulbs under dehumidified air. International Journal of Food Engineering, 13(9). https://doi.org/10.1515/ijfe-2016-0401.

  • Aware, R. S., & Thorat, B. N. (2011). Garlic under various drying study and its impact on allicin retention. Drying Technology, 29(13), 1510–1518.

    Article  Google Scholar 

  • Babu, A. K., Kumaresan, G., Raj, V. A. A., & Velraj, R. (2018). Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews, 90, 536–556.

    Article  Google Scholar 

  • Bai, J.-W., Sun, D.-W., Xiao, H.-W., Mujumdar, A. S., & Gao, Z.-J. (2013). Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innovative Food Science & Emerging Technologies, 20, 230–237.

    Article  CAS  Google Scholar 

  • Balasubramanian, S., Roselin, P., Singh, K. K., Zachariah, J., & Saxena, S. N. (2016). Postharvest processing and benefits of black pepper, coriander, cinnamon, fenugreek, and turmeric spices. Critical Reviews in Food Science and Nutrition, 56(10), 1585–1607.

    Article  CAS  PubMed  Google Scholar 

  • Baroni, A. F., & Hubinger, M. D. (1998). Drying of onion: effects of pretreatment on moisture transport. Drying Technology, 16(9-10), 2083–2094.

    Article  Google Scholar 

  • Barresi, A. A., Ghio, S., Fissore, D., & Pisano, R. (2009). freeze drying of pharmaceutical excipients close to collapse temperature: Influence of the process conditions on process time and product quality. Drying Technology, 27(6), 805–816.

    Article  CAS  Google Scholar 

  • Basu, S., Shivhare, U. S., & Mujumdar, A. S. (2006). Models for sorption isotherms for foods: A review. Drying Technology, 24(8), 917–930.

    Article  Google Scholar 

  • Beedie, M. (1995). Energy saving–a question of quality? Dairy Industries International, 60(12), 27–29.

    Google Scholar 

  • Bevilacqua, A., Petruzzi, L., Perricone, M., Speranza, B., Campaniello, D., Sinigaglia, M., & Corbo, M. R. (2018). Nonthermal technologies for fruit and vegetable juices and beverages: Overview and advances. Comprehensive Reviews in Food Science and Food Safety, 17(1), 2–62.

    Article  PubMed  Google Scholar 

  • Bhattarai, S., Tran, V. H., & Duke, C. C. (2001). The stability of gingerol and shogaol in aqueous solutions. Journal of Pharmaceutical Sciences, 90(10), 1658–1664.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry., 42(6), e12675. https://doi.org/10.1111/jfbc.12675.

    Article  CAS  Google Scholar 

  • Bingol, G., Roberts, J. S., Balaban, M. O., & Devres, Y. O. (2012). Effect of dipping temperature and dipping time on drying rate and color change of grapes. Drying Technology, 30(6), 597–606.

    Article  CAS  Google Scholar 

  • Blasco, M., García-Pérez, J. V., Bon, J., Carreres, J. E., & Mulet, A. (2006). Effect of blanching and air flow rate on turmeric drying. Food Science and Technology International, 12(4), 315–323.

    Article  Google Scholar 

  • Borah, A., Sethi, L. N., Sarkar, S., & Hazarika, K. (2015). Effect of drying on texture and color characteristics of ginger and turmeric in a solar biomass integrated dryer. Journal of Food Process Engineering, 40(1). https://doi.org/10.1111/jfpe.12310.

  • Bozkir, H., Rayman Ergün, A., Tekgül, Y., & Baysal, T. (2018). Ultrasound as pretreatment for drying garlic slices in microwave and convective dryer. Food Science and Biotechnology, 28(2), 347–354.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cárcel, J. A., Castillo, D., Simal, S., & Mulet, A. (2018). Influence of temperature and ultrasound on drying kinetics and antioxidant properties of red pepper. Drying Technology, 37(4), 486–493.

    Article  Google Scholar 

  • Castillo-Téllez, M., Pilatowsky-Figueroa, I., López-Vidaña, E. C., Sarracino-Martínez, O., & Hernández-Galvez, G. (2016). Dehydration of the red chilli (Capsicum annuum L., costeño) using an indirect-type forced convection solar dryer. Applied Thermal Engineering, 114, 1137–1144.

    Article  Google Scholar 

  • Cecchi, L., Ieri, F., Vignolini, P., Mulinacci, N., & Romani, A. (2020). Characterization of volatile and flavonoid composition of different cuts of dried onion (Allium cepa L.) by HS-SPME-GC-MS, HS-SPME-GCXGC-TOF and HPLC-DAD. Molecules, 25(2), 408.

    Article  CAS  PubMed Central  Google Scholar 

  • Celia Roman, M., Paula Fabani, M., Celina Luna, L., Egly Feresin, G., Mazza, G., & Rodriguez, R. (2019). Convective drying of yellow discarded onion (Angaco INTA): Modelling of moisture loss kinetics and effect on phenolic compounds. Information Processing in Agriculture, https://doi.org/10.1016/j.inpa.2019.07.002.

  • Chhetri, P., Vijayan, A. K., Bhat, S. K., Gudade, B. A., & Bora, S. S. (2015). An overview of grouping of spices. Indian Botanists, http://www.indianbotanists.com/2015/09/an-overview-of-grouping-of-spices.html Accessed 20 Oct 2020.

  • Chirife, J., & Fontana, A. J. (2008). Introduction: Historical highlights of water activity research. In G. V. Barbosa-Cánovas, A. J. Fontana, S. J. Schmidt, & T. P. Labuza (Eds.), Water Activity in Foods: Fundamentals and Applications (pp. 3–13). Blackwell Publishing.

  • Chua, L. Y. W., Chong, C. H., Chua, B. L., & Figiel, A. (2019). Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: A review. Food and Bioprocess Technology, 12(3), 450–476.

    Article  CAS  Google Scholar 

  • Chumroenphat, T., Khanprom, I., & Butkhup, L. (2011). Stability of phytochemicals and antioxidant properties in ginger (Zingiber officinale Roscoe) rhizome with different drying methods. Journal of Herbs, Spices & Medicinal Plants, 17(4), 361–374.

    Article  CAS  Google Scholar 

  • Cui, Z.-W., Xu, S.-Y., & Sun, D.-W. (2003). Dehydration of garlic slices by combined microwave-vacuum and air drying. Drying Technology, 21(7), 1173–1184.

    Article  Google Scholar 

  • Delgado, J. M. P. Q., & de Lima, A. G. B. (2016). Drying and energy technologies. Springer International Publishing.

  • deMan, J. M., Finley, J. W., Hurst, W. J., & Lee, C. Y. (2018). Principles of food chemistry (4th ed.). Springer International Publishing.

  • Deng, L. Z., Mujumdar, A. S., Zhang, Q., Yang, X. H., Wang, J., Zheng, Z. A., Gao, Z. J., & Xiao, H. W. (2017). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes—A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9), 1408–1432.

    Article  PubMed  Google Scholar 

  • Deshmukh, A. W., Varma, M. N., Yoo, C. K., & Wasewar, K. L. (2013). Effect of ethyl oleate pretreatment on drying of ginger: Characteristics and mathematical modelling. Journal of Chemistry., 2013, 1–6. https://doi.org/10.1155/2013/890384.

    Article  CAS  Google Scholar 

  • Dinçer, İ., & Zamfirescu, C. (2016). Drying Phenomena Theory and Applications. John Wiley & Sons.

  • Djaeni, M., & Perdanianti, A. M. (2019). The study explores the effect of onion (Allium cepa l.) drying using hot air dehumidified by activated carbon, silica gel and zeolite. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1295/1/012025.

  • Djendoubi Mrad, N., Boudhrioua, N., Kechaou, N., Courtois, F., & Bonazzi, C. (2012). Influence of air-drying temperature on kinetics, physicochemical properties, total phenolic content and ascorbic acid of pears. Food and Bioproducts Processing, 90(3), 433–441.

    Article  Google Scholar 

  • Doymaz, İ. (2010). Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples. Food and Bioproducts Processing, 88(2-3), 124–132.

    Article  CAS  Google Scholar 

  • Doymaz, İ., & Altıner, P. (2012). Effect of pretreatment solution on drying and color characteristics of seedless grapes. Food Science and Biotechnology, 21(1), 43–49.

    Article  Google Scholar 

  • Drouzas, A. E., & Schubert, H. (1996). Microwave application in vacuum drying of fruits. Journal of Food Engineering, 28(2), 203–209.

    Article  Google Scholar 

  • Erbay, Z., & Icier, F. (2010). A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition, 50(5), 441–464.

    Article  PubMed  Google Scholar 

  • Ergüneş, G., & Tarhan, S. (2006). Color retention of red peppers by chemical pretreatments during greenhouse and open sun drying. Journal of Food Engineering, 76(3), 446–452.

    Article  Google Scholar 

  • Esturk, O. (2012). Intermittent and continuous microwave-convective air-drying characteristics of sage (Salvia officinalis) leaves. Food and Bioprocess Technology, 5(5), 1664–1673.

    Article  Google Scholar 

  • Fennema, O. R. (1996). Food chemistry (3rd ed.). Marcel Dekker.

  • Fernandes, F. A. N., Rodrigues, S., Law, C. L., & Mujumdar, A. S. (2011). Drying of exotic tropical fruits: A comprehensive review. Food and Bioprocess Technology, 4(2), 163–185.

    Article  Google Scholar 

  • Figiel, A., Szumny, A., Gutiérrez-Ortíz, A., & Carbonell-Barrachina, Á. A. (2010). Composition of oregano essential oil (Origanum vulgare) as affected by drying method. Journal of Food Engineering, 98(2), 240–247.

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization Statistical Database (FAOSTAT-2019). file:///F:/Paper%20Writting/Spices/Spice%20Overall/FAOSTAT.html Accessed 26 Feb 2021.

  • Gan, H., Charters, E., Driscoll, R., & Srzednicki, G. (2016). Effects of drying and blanching on the retention of bioactive compounds in ginger and turmeric. Horticulturae, 3(1), 13.

    Article  Google Scholar 

  • Gao, Y., Wu, S., Sun, Y., Cong, R., Xiao, J., & Ma, F. (2018). Effect of freeze dried, hot air dried and fresh onions on the composition of volatile sulfocompounds in onion oils. Drying Technology, 37(11), 1427–1440.

    Article  Google Scholar 

  • Gaware, T. J., Sutar, N., & Thorat, B. N. (2010). Drying of tomato using different methods: comparison of dehydration and rehydration kinetics. Drying Technology, 28(5), 651–658.

    Article  CAS  Google Scholar 

  • George, J. M., Sowbhagya, H. B., & Rastogi, N. K. (2017). Effect of high-pressure pretreatment on drying kinetics and oleoresin extraction from ginger. Drying Technology, 36(9), 1107–1116.

    Article  Google Scholar 

  • Ghasemzadeh, A., Jaafar, H., Baghdadi, A., & Tayebi-Meigooni, A. (2018). Formation of 6-, 8- and 10-Shogaol in ginger through application of Different drying methods: Altered antioxidant and antimicrobial activity. Molecules, 23(7), 1646.

    Article  PubMed Central  Google Scholar 

  • Giri, S. K., & Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78(2), 512–521.

    Article  Google Scholar 

  • Gregory III, J. F. (2008). Vitamins. In S. Damodaran, K. L. Parkin, & O. R. Fennema (Eds.), Fennema’s Food Chemistry (4th ed., pp. 439–521). Taylor & Francis.

  • Guida, V., Ferrari, G., Pataro, G., Chambery, A., Di Maro, A., & Parente, A. (2013). The effects of ohmic and conventional blanching on the nutritional, bioactive compounds and quality parameters of artichoke heads. LWT - Food Science and Technology, 53(2), 569–579.

    Article  CAS  Google Scholar 

  • Han, J., Lawson, L., Han, G., & Han, P. (1995). Spectrophotometric method for quantitative determination of allicin and total garlic thiosulfinates. Analytical Biochemistry, 225(1), 157–160.

    Article  CAS  PubMed  Google Scholar 

  • Hawlader, M. N. A., Perera, C. O., & Tian, M. (2006). Comparison of the retention of 6-gingerol in drying of ginger under modified atmosphere heat pump drying and other drying methods. Drying Technology, 24(1), 51–56.

    Article  CAS  Google Scholar 

  • Hay, N., Duc, L. A., & Kien, P. V. (2019). Study on designing and manufacturing a radio-frequency generator used in drying technology and efficiency of a radio frequency-assisted heat pump dryer in drying of Ganoderma lucidum. Green Technologies. https://doi.org/10.5772/intechopen.88825.

  • Hirun, S., Utama-ang, N., & Roach, P. D. (2014). Turmeric (Curcuma longa L.) drying: An optimization approach using microwave-vacuum drying. Journal of Food Science and Technology, 51(9), 2127–2133.

    Article  PubMed  Google Scholar 

  • Huang, T.-C., Chung, C.-C., Wang, H.-Y., Law, C.-L., & Chen, H.-H. (2011). Formation of 6-shogaol of ginger oil under different drying conditions. Drying Technology, 29(16), 1884–1889.

    Article  CAS  Google Scholar 

  • Huang, B., Wang, G., Chu, Z., & Qin, L. (2012). Effect of oven drying, microwave drying, and silica gel drying methods on the volatile components of ginger (Zingiber officinale Roscoe) by HS-SPME-GC-MS. Drying Technology, 30(3), 248–255.

    Article  CAS  Google Scholar 

  • Iglesias, H. A., & Chirife, J. (1982). Handbook of food isotherms: Water sorption parameters for food and food components. Academic Press.

  • International Organization for Standardization (ISO). (1995). Spices and condiments. ISO, 676, 1995.

    Google Scholar 

  • IS 3576 (2010): Spices and condiments–turmeric, whole and ground–specification (Third Revision). ICS 67.220.10.

  • Janjai, S., Lamlert, N., Mahayothee, B., Sruamsiri, P., Precoppe, M., Bala, B. K., & Muller, J. (2011). Experimental and simulated performances of a batch-type longan dryer with air flow reversal using biomass burner as a heat source. Drying Technology, 29(12), 1439–1451.

    Article  Google Scholar 

  • Jessica Elizabeth, D. L. T. T., Gassara, F., Kouassi, A. P., Brar, S. K., & Belkacemi, K. (2015). Spice use in food: Properties and benefits. Critical Reviews in Food Science and Nutrition, 57(6), 1078–1088.

    Article  Google Scholar 

  • Joardder, M. U. H., Brown, R. J., Kumar, C., & Karim, M. A. (2015). Effect of cell wall properties on porosity and shrinkage of dried apple. International Journal of Food Properties, 18(10), 2327–2337.

    Article  Google Scholar 

  • Joardder, M. U. H., Kumar, C., & Karim, M. A. (2017). Prediction of porosity of food materials during drying: Current challenges and directions. Critical Reviews in Food Science and Nutrition, 58, 2896–2907.

    Article  PubMed  Google Scholar 

  • Joe, B., Vijaykumar, M., & Lokesh, B. R. (2004). Biological properties of curcumin-cellular and molecular mechanisms of action. Critical Reviews in Food Science and Nutrition, 44(2), 97–111.

    Article  CAS  PubMed  Google Scholar 

  • Kamal, M. M., Ali, M. R., Rahman, M. M., Shishir, M. R. I., Yasmin, S., & Sarker, M. S. H. (2019). Effects of processing techniques on drying characteristics, physicochemical properties and functional compounds of green and red chilli (Capsicum annum L.) powder. Journal of Food Science and Technology, 56(7), 3185–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karathanos, V. (1993). Collapse of structure during drying of celery. Drying Technology, 11(5), 1005–1023.

    Article  Google Scholar 

  • Karthikeyan, A. K., & Murugavelh, S. (2018). Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renewable Energy, 128, 305–312.

    Article  Google Scholar 

  • Khan, M. I. H., Joardder, M. U. H., Kumar, C., & Karim, M. A. (2016). Multiphase porous media modelling: A novel approach to predicting food processing performance. Critical Reviews in Food Science and Nutrition, 58(4), 528–546.

    Article  Google Scholar 

  • Kowalski, S. J. (2007). Drying of Porous Materials. Springer.

  • Kowalski, S. J., & Mierzwa, D. (2011). Hybrid drying of red bell pepper: energy and quality issues. Drying Technology, 29(10), 1195–1203.

    Article  Google Scholar 

  • Krokida, M. K., & Maroulis, Z. B. (2001). Structural properties of dehydrated products during rehydration. International Journal of Food Science and Technology, 36(5), 529–538.

    Article  CAS  Google Scholar 

  • Kucuk, H., Midilli, A., Kilic, A., & Dincer, I. (2014). A review on thin-layer drying-curve equations. Drying Technology, 32(7), 757–773.

    Article  CAS  Google Scholar 

  • Kudra, T. (2004). Energy aspects in drying. Drying Technology, 22(5), 917–932.

    Article  Google Scholar 

  • Kudra, T., & Mujumdar, A. S. (2009). Advanced Drying Technologies. Taylor & Francis.

  • Kumar, C., Karim, M. A., & Joardder, M. U. H. (2014). Intermittent drying of food products: A critical review. Journal of Food Engineering, 121, 48–57.

    Article  Google Scholar 

  • Kutti Gounder, D., & Lingamallu, J. (2012). Comparison of chemical composition and antioxidant potential of volatile oil from fresh, dried and cured turmeric (Curcuma longa) rhizomes. Industrial Crops and Products, 38, 124–131.

    Article  CAS  Google Scholar 

  • Labuza, T. P. & Altunakar, B. (2008). Water activity prediction and moisture sorption isotherms. In G. V. Barbosa-Cánovas, A. J. Fontana Jr. S. J. Schmidt, T. P. Labuza (Eds.), Water activity in foods: Fundamentals and applications:Blackwell Publishing.

  • Lakshmi, D. V. N., Muthukumar, P., Layek, A., & Nayak, P. K. (2018). Drying kinetics and quality analysis of black turmeric (Curcuma caesia) drying in a mixed mode forced convection solar dryer integrated with thermal energy storage. Renewable Energy, 120, 23–34.

    Article  CAS  Google Scholar 

  • Leeratanarak, N., Devahastin, S., & Chiewchan, N. (2006). Drying kinetics and quality of potato chips undergoing different drying techniques. Journal of Food Engineering, 77(3), 635–643.

    Article  CAS  Google Scholar 

  • Lv, W., Li, S., Han, Q., Zhao, Y., & Wu, H. (2016). Study of the drying process of ginger (Zingiber officinale Roscoe) slices in microwave fluidized bed dryer. Drying Technology, 34(14), 1690–1699.

    Article  CAS  Google Scholar 

  • Madhava Naidu, M., Vedashree, M., Satapathy, P., Khanum, H., Ramsamy, R., & Hebbar, H. U. (2016). Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chemistry, 192, 849–856.

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: A short review. Life Sciences, 78(18), 2081–2087.

    Article  CAS  PubMed  Google Scholar 

  • Mahiuddin, M., Khan, M. I. H., Kumar, C., Rahman, M. M., & Karim, M. A. (2018). Shrinkage of food materials during drying: Current status and challenges. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1113–1126.

    Article  PubMed  Google Scholar 

  • Majumdar, A. S. (2004). Dehydration of products of biological origin. Science Publishers.

  • Martynenko, A., Bashkir, I., & Kudra, T. (2019). Electrically enhanced drying of white champignons. Drying Technology, 39(2), 234–244. https://doi.org/10.1080/07373937.2019.1670672.

    Article  CAS  Google Scholar 

  • McLoughlin, C. M., McMinn, W. A. M., & Magee, T. R. A. (2003). Microwave drying of multi-component powder systems. Drying Technology, 21(2), 293–309.

    Article  CAS  Google Scholar 

  • Meetha, J. N., Muhammadali, P., Joy, M. I., Mahendran, R., & Santhakumaran, A. (2016). Pulsed microwave assisted hot air drying of nutmeg mace for better colour retention. Journal of Spices and Aromatic Crops, 25(1), 84–87.

    Google Scholar 

  • Mitra, J., Shrivastava, S. L., & Rao, P. S. (2012). Onion dehydration: A review. Journal of Food Science and Technology, 49(3), 267–277.

    Article  CAS  PubMed  Google Scholar 

  • Moreau, M., Orange, N., & Feuilloley, M. G. J. (2008). Non-thermal plasma technologies: New tools for bio-decontamination. Biotechnology Advances, 26(6), 610–617.

    Article  CAS  PubMed  Google Scholar 

  • Mortezapour, H., Rashedi, S. J., Akhavan, H. R., & Maghsoudi, H. (2017). Experimental analysis of a solar dryer equipped with a novel heat recovery system for onion drying. Journal of Agricultural Science and Technology, 19(6), 1227–1240.

    Google Scholar 

  • Nasiroglu, S., & and Kocabiyik, H. (2007). Thin-layer infrared radiation drying of red pepper slices. Journal of Food Process Engineering, 32, 1–16.

  • Olalusi, A. (2014). Hot air drying and quality of red and white varieties of onion (Allium cepa). Journal of Agricultural Chemistry and Environment, 3(04), 13–19.

    Article  Google Scholar 

  • Omolola, A. O., Jideani, A. I. O., & Kapila, P. F. (2015). Quality properties of fruits as affected by drying operation. Critical Reviews in Food Science and Nutrition, 57(1), 95–108.

    Article  Google Scholar 

  • Onwude, D. I., Hashim, N., & Chen, G. (2016a). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132–145.

    Article  CAS  Google Scholar 

  • Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016b). Modeling the thin-layer drying of fruits and vegetables: A review. Comprehensive Reviews in Food Science and Food Safety, 15(3), 599–618.

    Article  PubMed  Google Scholar 

  • Onwude, D. I., Hashim, N., Janius, R., Abdan, K., Chen, G., & Oladejo, A. O. (2017). Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innovative Food Science & Emerging Technologies, 43, 223–238.

    Article  CAS  Google Scholar 

  • Osae, R., Zhou, C., Xu, B., Tchabo, W., Tahir, H. E., Mustapha, A. T., & Ma, H. (2019). Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. Journal of Food Biochemistry, 43(5), e12832. https://doi.org/10.1111/jfbc.12832.

    Article  CAS  PubMed  Google Scholar 

  • Oteiza, P. I., Erlejman, A. G., Verstraeten, S. V., Keen, C. L., & Fraga, C. G. (2005). Flavonoid-membrane interactions: A protective role of flavonoids at the membrane surface? Clinical and Developmental Immunology, 12(1), 19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özbek, B., & Dadali, G. (2007). Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering, 83(4), 541–549.

    Article  Google Scholar 

  • Parlak, N. (2014). Fluidized bed drying characteristics and modeling of ginger (Zingiber officinale) slices. Heat and Mass Transfer, 51(8), 1085–1095.

    Article  Google Scholar 

  • Pathare, P. B., & Sharma, G. P. (2006). Effective moisture diffusivity of onion slices undergoing infrared convective drying. Biosystems Engineering, 93(3), 285–291.

    Article  Google Scholar 

  • Perera, C. (2005). Selected quality attributes of dried foods. Drying Technology, 23(4), 717–730.

    Article  CAS  Google Scholar 

  • Peter, K. V. (2012). Handbook of herbs and spices (Vol. 1, 2nd ed.). Woodhead Publishing.

  • Phoungchandang, S., & Saentaweesuk, S. (2011). Effect of two stage, tray and heat pump assisted-dehumidified drying on drying characteristics and qualities of dried ginger. Food and Bioproducts Processing, 89(4), 429–437.

    Article  Google Scholar 

  • Prachayawarakorn, S., Kaewnin, N., Nathakaranakule, A., & Soponronnarit, S. (2006). Effects of peeled and unpeeled garlic cloves on the changes of drying rate and quality. Drying Technology, 24(1), 65–75.

  • Pradeep, K., Ravi, R., Prakash, J., & Madhava Naidu, M. (2016). Influence of blanching and drying methods on the quality characteristics of fresh turmeric (Curcuma longa L.) rhizomes. International Journal of Applied and Pure Science and Agriculture, 2: e-ISSN: 2394-5532.

  • Prakash, O., & Kumar, A. (2017). Solar drying technology- concept, design, testing, modelling, economics, and environment. Green Energy and Technology. Springer Nature.

  • Prasad, J., & Vijay, V. K. (2005). Experimental studies on drying of Zingiber officinale, Curcuma longa l. and Tinospora cordifolia in solar-biomass hybrid drier. Renewable Energy, 30(14), 2097–2109.

    Article  CAS  Google Scholar 

  • Prathapan, A., Lukhman, M., Arumughan, C., Sundaresan, A., & Raghu, K. G. (2009). Effect of heat treatment on curcuminoid, colour value and total polyphenols of fresh turmeric rhizome. International Journal of Food Science & Technology, 44(7), 1438–1444.

    Article  CAS  Google Scholar 

  • Pugliese, A., Loizzo, M. R., Tundis, R., O’Callaghan, Y., Galvin, K., Menichini, F., & O’Brien, N. (2013). The effect of domestic processing on the content and bioaccessibility of carotenoids from chili peppers (Capsicum species). Food Chemistry, 141(3), 2606–2613.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, S. (2007). Handbook of food preservation (2nd ed.). Taylor & Francis.

  • Rahman, S., & Lamb, J. (1991). Air drying behavior of fresh and osmotically dehydrated pineapple. Journal of Food Process Engineering, 14(3), 163–171.

    Article  Google Scholar 

  • Rahman, M. S., Al-Shamsi, Q. H., Bengtsson, G. B., Sablani, S. S., & Al-Alawi, A. (2009). Drying kinetics and allicin potential in garlic slices during different methods of drying. Drying Technology, 27(3), 467–477.

    Article  CAS  Google Scholar 

  • Raso, J., & Barbosa-Cánovas, G. V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265–285.

    Article  PubMed  Google Scholar 

  • Ratti, C., Araya-Farias, M., Mendez-Lagunas, L., & Makhlouf, J. (2007). Drying of garlic (Allium sativum) and its effect on allicin retention. Drying Technology, 25(2), 349–356.

    Article  Google Scholar 

  • Ren, F., Perussello, C. A., Zhang, Z., Kerry, J. P., & Tiwari, B. K. (2017). Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. LWT - Food Science and Technology, 87, 102–111.

    Article  Google Scholar 

  • Rhim, J.-W., & Hong, S.-I. (2011). Effect of water activity and temperature on the color change of red pepper (Capsicum annuum L.) powder. Food Science and Biotechnology, 20(1), 215–222.

    Article  Google Scholar 

  • Sablani, S. S. (2006). Drying of fruits and vegetables: Retention of nutritional/functional quality. Drying Technology, 24(2), 123–135.

    Article  Google Scholar 

  • Sablani, S. S., Kasapis, S., & Rahman, M. S. (2007). Evaluating water activity and glass transition concepts for food stability. Journal of Food Engineering, 78(1), 266–271.

    Article  Google Scholar 

  • Saengrayap, R., Tansakul, A., & Mittal, G. S. (2014). Effect of far-infrared radiation assisted microwave-vacuum drying on drying characteristics and quality of red chilli. Journal of Food Science and Technology, 52(5), 2610–2621.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sappati, P. K., Nayak, B., & van Walsum, G. P. (2017). Effect of glass transition on the shrinkage of sugar kelp (Saccharina latissima) during hot air convective drying. Journal of Food Engineering, 210, 50–61.

    Article  CAS  Google Scholar 

  • Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108(1), 103–110.

    Article  Google Scholar 

  • Schweiggert, U., Schieber, A., & Carle, R. (2006). Effects of blanching and storage on capsaicinoid stability and peroxidase activity of hot chili peppers (Capsicum frutescens L.). Innovative Food Science & Emerging Technologies, 7(3), 217–224.

    Article  CAS  Google Scholar 

  • Scott, W. J. (1957). Water relations of food spoilage microorganisms. Advances in Food Research, 7, 83–127.

    Article  CAS  Google Scholar 

  • Sehrawat, R., & Nema, P. K. (2018). Low pressure superheated steam drying of onion slices: Kinetics and quality comparison with vacuum and hot air drying in an advanced drying unit. Journal of Food Science and Technology, 55(10), 4311–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, R., Joshi, V., & Kaushal, M. (2015). Effect of pre-treatments and drying methods on quality attributes of sweet bell-pepper (Capsicum annum) powder. Journal of Food Science and Technology, 52(6), 3433–3439.

    CAS  PubMed  Google Scholar 

  • Sharma, S., Dhalsamant, K., & Tripathy, P. P. (2018). Application of computer vision technique for physical quality monitoring of turmeric slices during direct solar drying. Journal of Food Measurement and Characterization, 13, 545–558.

    Article  Google Scholar 

  • Shinde, A., Das, S., & Datta, A. K. (2013). Quality improvement of orthodox and CTC tea and performance enhancement by hybrid hot air–radio frequency (RF) dryer. Journal of Food Engineering, 116(2), 444–449.

    Article  Google Scholar 

  • Singh, G., Arora, S., & Kumar, S. (2010a). Effect of mechanical drying air conditions on quality of turmeric powder. Journal of Food Science and Technology, 47(3), 347–350.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, G., Kapoor, I. P. S., Singh, P., de Heluani, C. S., de Lampasona, M. P., & Catalan, C. A. N. (2010b). Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food and Chemical Toxicology, 48(4), 1026–1031.

    Article  CAS  PubMed  Google Scholar 

  • Soysal, Y., Ayhan, Z., Eştürk, O., & Arıkan, M. F. (2009). Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosystems Engineering, 103(4), 455–463.

    Article  Google Scholar 

  • Supmoon, N., & Noomhorm, A. (2013). Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips. Drying Technology, 31(1), 24–31.

    Article  CAS  Google Scholar 

  • Surendhar, A., Sivasubramanian, V., Vidhyeswari, D., & Deepanraj, B. (2018). Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry, 136(1), 185–197. https://doi.org/10.1007/s10973-018-7791-9.

    Article  CAS  Google Scholar 

  • Takougnadi, E., Boroze, T.-E. T., & Azouma, O. Y. (2017). Development of an intermittent drying process of onion. Cogent Food & Agriculture., 4(1). https://doi.org/10.1080/23311932.2017.1422225.

  • Tao, Y., & Sun, D.-W. (2014). Enhancement of food processes by ultrasound: A review. Critical Reviews in Food Science and Nutrition, 55(4), 570–594.

    Article  Google Scholar 

  • Tao, Y., Zhang, J., Jiang, S., Xu, Y., Show, P.-L., Han, Y., Ye, X., & Ye, M. (2018). Contacting ultrasound enhanced hot-air convective drying of garlic slices: Mass transfer modeling and quality evaluation. Journal of Food Engineering, 235, 79–88.

    Article  Google Scholar 

  • Taylor, S. L., Higley, N. A., & Bush, R. K. (1986). Sulfites in foods: Uses, analytical methods, residues, fate, exposure assessment, metabolism, toxicity, and hypersensitivity. Advances in Food Research, 30, 1–76.

    Article  CAS  PubMed  Google Scholar 

  • Tham, T. C., Ng, M. X., Gan, S. H., Chua, L. S., Aziz, R., Abdullah, L. C., Ong, S. P., Chin, N. L., & Law, C. L. (2017). Impacts of different drying strategies on drying characteristics, the retention of bio-active ingredient and colour changes of dried Roselle. Chinese Journal of Chemical Engineering, 26(2), 303–316.

    Article  Google Scholar 

  • Thorat, I. D., Mohapatra, D., Sutar, R. F., Kapdi, S. S., & Jagtap, D. D. (2010). Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber Officinale R.) slices. Food and Bioprocess Technology, 5(4), 1379–1383.

    Article  Google Scholar 

  • Thuwapanichayanan, R., Phowong, C., Jaisut, D., & Štencl, J. (2014). Effects of pretreatments and drying temperatures on drying characteristics, antioxidant properties and color of ginger slice. Acta Univ Agric et Silvic Mendelianae Brun, 62(119), 1125–1134.

    Article  CAS  Google Scholar 

  • Toontom, N., Meenune, M., Posri, W., & Lertsiri, S. (2012). Effect of drying method on physical and chemical quality, hotness and volatile flavour characteristics of dried chilli. International Food Research Journal, 19(3), 1023–1031.

    CAS  Google Scholar 

  • Topuz, A., & Ozdemir, F. (2007). Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. Journal of Food Composition and Analysis, 20(7), 596–602.

    Article  CAS  Google Scholar 

  • Torreggiani, D. (1993). Osmotic dehydration in fruit and vegetable processing. Food Research International, 26(1), 59–68.

    Article  Google Scholar 

  • Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., & Bovy, A. G. (2013). Secondary metabolites of capsicum species and their importance in the human diet. Journal of Natural Products, 76(4), 783–793.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Yang, X. H., Mujumdar, A. S., Wang, D., Zhao, J. H., Fang, X. M., Zhang, Q., Xie, L., Gao, Z. J., & Xiao, H. W. (2016). Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). LWT Food Sci Technol, 77, 337–347.

    Article  Google Scholar 

  • Wang, Y., Duan, X., Ren, G., & Liu, Y. (2018). Comparative study on the flavonoids extraction rate and antioxidant activity of onions treated by three different drying methods. Drying Technology, 37(2), 245–252.

    Article  Google Scholar 

  • Weerts, A. H., Lian, G., & Martin, D. (2003). Modeling rehydration of porous biomaterials: anisotropy effects. Journal of Food Science, 68(3), 937–942.

    Article  CAS  Google Scholar 

  • Won, Y.-C., Min, S. C., & Lee, D.-U. (2015). Accelerated drying and improved color properties of red pepper by pretreatment of pulsed electric fields. Drying Technology, 33(8), 926–932.

    Article  Google Scholar 

  • Xi, J., Shen, D., Zhao, S., Lu, B., Li, Y., & Zhang, R. (2009). Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. International Journal of Pharmaceutics, 382(1-2), 139–143.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, H. W., Pan, Z., Deng, L. Z., El-Mashad, H. M., Yang, X. H., Mujumdar, A. S., Gao, Z. J., & Zhang, Q. (2017). Recent developments and trends in thermal blanching—A comprehensive review. Information Processing in Agriculture, 4(2), 101–127.

    Article  Google Scholar 

  • Yang, X.-H., Deng, L.-Z., Mujumdar, A. S., Xiao, H.-W., Zhang, Q., & Kan, Z. (2018). Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. Journal of Food Engineering, 231, 101–108.

    Article  Google Scholar 

  • Yanyang, X., Min, Z., Mujumdar, A. S., Le-qun, Z., & Jin-cai, S. (2004). Studies on hot air and microwave vacuum drying of wild cabbage. Drying Technology, 22(9), 2201–2209.

    Article  Google Scholar 

  • Younis, M., Abdelkarim, D., & Zein El-Abdein, A. (2018). Kinetics and mathematical modeling of infrared thin-layer drying of garlic slices. Saudi Journal of Biological Sciences, 25(2), 332–338.

    Article  PubMed  Google Scholar 

  • Zhang, M., Chen, H., Mujumdar, A. S., Tang, J., Miao, S., & Wang, Y. (2017). Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition, 57(6), 1239–1255.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.-L., Zhong, C.-S., Mujumdar, A. S., Yang, X.-H., Deng, L.-Z., Wang, J., & Xiao, H.-W. (2018). Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering, 241, 51–57.

    Article  Google Scholar 

  • Zhao, D., Zhao, C., Tao, H., An, K., Ding, S., & Wang, Z. (2013). The effect of osmosis pretreatment on hot-air drying and microwave drying characteristics of chili (Capsicum annuum L.) flesh. International Journal of Food Science & Technology, 48(8), 1589–1595.

    Article  CAS  Google Scholar 

  • Zhou, X., & Wang, S. (2018). Recent developments in radio frequency drying of food and agricultural products: A review. Drying Technology, 37(3), 271–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Sinha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumder, P., Sinha, A., Gupta, R. et al. Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models. Food Bioprocess Technol 14, 1028–1054 (2021). https://doi.org/10.1007/s11947-021-02646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-021-02646-7

Keywords

Navigation