Skip to main content

Advertisement

Log in

Assessment of the Bioactive Potential of Cheese Whey Protein Hydrolysates Using Immobilized Alcalase

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The hydrolysis of bovine cheese whey (BCW) proteins was performed by the Alcalase immobilized on the support glyoxyl-corn-cob-powder (AGCCP). The whey protein hydrolysates (WPH) obtained with AGCPP were fractionated by RP-HPLC according to the hydrophilicity of the peptides (F1, hydrophilic; F2, intermediate hydrophilicity; and F3, hydrophobic). The fractions were analyzed by MALDI-TOF, and molecular weight peptides (< 1500 m/z) were identified. Total WPH obtained by AGCCP presented high capacity reduction of the ABTS radical (57.82%) and high chelating activity of iron II (76.2%). The obtained peptides showed high antimicrobial activity (87.75–100%) against the species Escherichia coli (ATCC 43895) and Listeria monocytogenes (ATCC 7644). Only F2 was effective against the Candida albicans strain ATCC 18804 tested (MIC = 10 mg/mL). The results of this study show that the hydrolysis of BCW proteins using the AGCCP derivative represents a very interesting and viable way for obtention of bioactive peptides from cheese whey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abeyrathne, E. D. N. S., Lee, H. Y., Jo, C., Suh, J. W., & Ahn, D. U. (2016). Enzymatic hydrolysis of ovomucin and the functional and structural characteristics of peptides in the hydrolysates. Food Chemistry, 192, 107–113.

    CAS  PubMed  Google Scholar 

  • Bassan, J. C., de Souza Bezerra, T. M., Peixoto, G., Da Cruz, C. Z. P., Galán, J. P. M., Vaz, A. B. D. S., & Monti, R. (2016). Immobilization of trypsin in lignocellulosic waste material to produce peptides with bioactive potential from whey protein. Materials, 9(5), 357.

    PubMed Central  Google Scholar 

  • Bassan, J. C., Goulart, A. J., Nasser, A. L., Bezerra, T. M., Garrido, S. S., Rustiguel, C. B., & Monti, R. (2015). Buffalo cheese whey proteins, identification of a 24 kDa protein and characterization of their hydrolysates: In vitro gastrointestinal digestion. PLoS One, 10(10), e0139550.

    PubMed  PubMed Central  Google Scholar 

  • Belhacene, K., Grosu, E. F., Blaga, A. C., Dhulster, P., Pinteala, M., & Froidevaux, R. (2015). Simple eco-friendly β-galactosidase immobilization on functionalized magnetic particles for lactose hydrolysis. Environmental Engineering & Management Journal (EEMJ), 14(3).

  • Bhandari, D., Rafiq, S., Gat, Y., Gat, P., Waghmare, R., & Kumar, V. (2020). A review on bioactive peptides: physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics, 26(1), 139–150.

    CAS  Google Scholar 

  • Brandelli, A., Daroit, D. J., & Corrêa, A. P. F. (2015). Whey as a source of peptides with remarkable biological activities. Food Research International, 73, 149–161.

    CAS  Google Scholar 

  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28(1), 25–30.

    CAS  Google Scholar 

  • Brígida, A. I. S., Calado, V. M. A., Gonçalves, L. R. B., & Coelho, M. A. Z. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 79(4), 832–838.

    Google Scholar 

  • Brígida, A. I., Pinheiro, Á. D., Ferreira, A. L., Pinto, G. A., & Gonçalves, L. R. (2007). Immobilization of Candida antarctica lipase B by covalent attachment to green coconut fiber. In Applied Biochemistry and Biotecnology (pp. 67-80). Humana Press.

  • Bruni, N., Capucchio, M. T., Biasibetti, E., Pessione, E., Cirrincione, S., Giraudo, L., & Dosio, F. (2016). Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 21(6), 752.

    PubMed Central  Google Scholar 

  • Carvalho, L. A., & Machini, M. T. (2013). Hemocidinas derivadas da hemoglobina: Estruturas, propriedades e perspectivas. Química Nova, 36(7), 1021–1029.

    CAS  Google Scholar 

  • Castro, H. F., de Lima, R., & Roberto, I. C. (2001). Rice straw as a support for immobilization of microbial lipase. Biotechnology Progress, 17(6), 1061–1064.

    PubMed  Google Scholar 

  • Clément, M., Tremblay, J., Lange, M., Thibodeau, J., & Belhumeur, P. (2007). Whey-derived free fatty acids suppress the germination of Candida albicans in vitro. FEMS Yeast Research, 7(2), 276–285.

    PubMed  Google Scholar 

  • CLSI. (2006). Manual Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards.

  • CLSI. (2008). Manual Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards.

  • Conway, V., Gauthier, S. F., & Pouliot, Y. (2013). Antioxidant activities of buttermilk proteins, whey proteins, and their enzymatic hydrolysates. Journal of Agricultural and Food Chemistry, 61(2), 364–372.

    CAS  PubMed  Google Scholar 

  • Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides, 61, 48–55.

    PubMed  Google Scholar 

  • Costa-Silva, T. A., Souza, C. R. F., Said, S., & Oliveira, W. P. (2015). Drying of enzyme immobilized on eco-friendly supports. African Journal of Biotechnology, 14(44), 3019–3026.

    CAS  Google Scholar 

  • Cruz, C. Z. P., dos Santos Vaz, A. B., Bassan, J. C., Garrido, S. S., de Paula, A. V., & Monti, R. (2020). Hidrólise das proteínas do soro do queijo utilizando a alcalase imobilizada em pó de sabugo de milho/Hydrolysis of cheese whey proteins using immobilized alkali powder from corn cob. Brazilian Journal of Development, 6(7), 45947–45953.

    Google Scholar 

  • Demers-Mathieu, V., Gauthier, S. F., Britten, M., Fliss, I., Robitaille, G., & Jean, J. (2013). Antibacterial activity of peptides extracted from tryptic hydrolyzate of whey protein by nanofiltration. International Dairy Journal, 28(2), 94–101.

    CAS  Google Scholar 

  • Dryáková, A., Pihlanto, A., Marnila, P., Čurda, L., & Korhonen, H. J. (2010). Antioxidant properties of whey protein hydrolysates as measured by three methods. European Food Research and Technology, 230(6), 865–874.

    Google Scholar 

  • El-Zahar, K., Sitohy, M., Choiset, Y., Metro, F., Haertle, T., & Chobert, J. M. (2004). Antimicrobial activity of ovine whey protein and their peptic hydrolysates. Milchwissenschaft, 59(11), 653–656.

    CAS  Google Scholar 

  • Fox, P. F., Guinee, T. P., Cogan, T. M., & McSweeney, P. L. (2017). Whey and whey products. In In Fundamentals of Cheese Science (pp. 755–769). Boston: Springer.

    Google Scholar 

  • Garcia-Mora, P., Peñas, E., Frias, J., & Martínez-Villaluenga, C. (2014). Savinase, the most suitable enzyme for releasing peptides from lentil (Lens culinaris var. Castellana) protein concentrates with multifunctional properties. Journal of Agricultural and Food Chemistry, 62(18), 4166–4174.

    CAS  PubMed  Google Scholar 

  • Garibotto, F. M., Garro, A. D., Masman, M. F., Rodríguez, A. M., Luiten, P. G., Raimondi, M., & Enriz, R. D. (2010). New small-size peptides possessing antifungal activity. Bioorganic & Medicinal Chemistry, 18(1), 158–167.

    CAS  Google Scholar 

  • De Gobba, C., Espejo-Carpio, F. J., Skibsted, L. H., & Otte, J. (2014). Antioxidant peptides from goat milk protein fractions hydrolysed by two commercial proteases. International Dairy Journal, 39(1), 28–40.

    Google Scholar 

  • DeWayne Ashmead, H. (2001). The absorption and metabolism 01 iron amino acid chelate. Archivos Latinoamericanos de Nutricion, 51(1), 13–21.

    Google Scholar 

  • Goulart, A. J., Bassan, J. C., Barbosa, O. A., Marques, D. P., Silveira, C. B., Santos, A. F., & Monti, R. (2014). Transport of amino acids from milk whey by Caco-2 cell monolayer after hydrolytic action of gastrointestinal enzymes. Food Research International, 63, 62–70.

    CAS  Google Scholar 

  • Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in Applied Microbiology, 50(4), 419–424.

    PubMed  Google Scholar 

  • Han, J., Jyoti, M. A., Song, H. Y., & Jang, W. S. (2016). Antifungal activity and action mechanism of histatin 5-halocidin hybrid peptides against Candida ssp. PLoS One, 11(2), e0150196.

    PubMed  PubMed Central  Google Scholar 

  • Haraguchi, F. K., Abreu, W. C. D., & Paula, H. D. (2006). Proteínas do soro do leite: composição, propriedades nutricionais, aplicações no esporte e benefícios para a saúde humana. Revista de Nutrição, 19(4), 479–488.

    CAS  Google Scholar 

  • Hogan, S., Zhang, L., Li, J., Wang, H., & Zhou, K. (2009). Development of antioxidant rich peptides from milk protein by microbial proteases and analysis of their effects on lipid peroxidation in cooked beef. Food Chemistry, 117(3), 438–443.

    CAS  Google Scholar 

  • Hörner, M., Giglio, V. F., Santos, A. J. R. W. A. D., Westphalen, A. B., Iglesias, B. A., Martins, P. R., ... & Paraginski, G. L. (2008). Triazenos e atividade antibacteriana. Revista Brasileira de Ciências Farmacêuticas, 44(3), 441-449.

  • Irshad, I., Kanekanian, A., Peters, A., & Masud, T. (2015). Antioxidant activity of bioactive peptides derived from bovine casein hydrolysate fractions. Journal of Food Science and Technology, 52(1), 231–239.

    CAS  Google Scholar 

  • Kim, S. B., Seo, I. S., Khan, M. A., Ki, K. S., Nam, M. S., & Kim, H. S. (2007). Separation of iron-binding protein from whey through enzymatic hydrolysis. International Dairy Journal, 17(6), 625–631.

    CAS  Google Scholar 

  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16(9), 945–960.

    CAS  Google Scholar 

  • López-Gallego, F., Fernandez-Lorente, G., Rocha-Martín, J., Bolivar, J. M., Mateo, C., & Guisan, J. M. (2020). Multi-point covalent immobilization of enzymes on glyoxyl agarose with minimal physico-chemical modification: stabilization of industrial enzymes. In In Immobilization of Enzymes and Cells (pp. 93–107). New York: Humana.

    Google Scholar 

  • Mandal, S. M., Bharti, R., Porto, W. F., Gauri, S. S., Mandal, M., Franco, O. L., & Ghosh, A. K. (2014). Identification of multifunctional peptides from human milk. Peptides, 56, 84–93.

    CAS  PubMed  Google Scholar 

  • Mann, B., Kumari, A., Kumar, R., Sharma, R., Prajapati, K., Mahboob, S., & Athira, S. (2015). Antioxidant activity of whey protein hydrolysates in milk beverage system. Journal of Food Science and Technology, 52(6), 3235–3241.

    CAS  PubMed  Google Scholar 

  • McPhie, P. (1971). [4] Dialysis. In Methods in enzymology (Vol. 22, pp. 23-32). Academic Press.

  • Möller, N. P., Scholz-Ahrens, K. E., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition, 47(4), 171–182.

    PubMed  Google Scholar 

  • Nagpal, R., Behare, P., Rana, R., Kumar, A., Kumar, M., Arora, S., & Yadav, H. (2011). Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food & Function, 2(1), 18–27.

    CAS  Google Scholar 

  • Najafian, L., & Babji, A. S. (2014). Production of bioactive peptides using enzymatic hydrolysis and identification antioxidative peptides from patin (Pangasius sutchi) sarcoplasmic protein hydolysate. Journal of Functional Foods, 9, 280–289.

    CAS  Google Scholar 

  • Oliveira, D., Fox, P., & O'Mahony, J. A. (2019). Byproducts from dairy processing. Byproducts from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels, 57-106.

  • Ortiz-Chao, P., Gómez-Ruiz, J. A., Rastall, R. A., Mills, D., Cramer, R., Pihlanto, A., & Jauregi, P. (2009). Production of novel ACE inhibitory peptides from β-lactoglobulin using Protease N Amano. International Dairy Journal, 19(2), 69–76.

    CAS  Google Scholar 

  • Pellegrini, A., Dettling, C., Thomas, U., & Hunziker, P. (2001). Isolation and characterization of four bactericidal domains in the bovine β-lactoglobulin. Biochimica et Biophysica Acta (BBA) - General Subjects, 1526(2), 131–140.

    CAS  Google Scholar 

  • Pellegrini, A., Thomas, U., Bramaz, N., Hunziker, P., & von Fellenberg, R. (1999). Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochimica et Biophysica Acta (BBA) - General Subjects, 1426(3), 439–448.

    CAS  Google Scholar 

  • Peng, X., Kong, B., Xia, X., & Liu, Q. (2010). Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. International Dairy Journal, 20(5), 360–365.

    CAS  Google Scholar 

  • Pessato, T. B., de Carvalho, N. C., Tavano, O. L., Fernandes, L. G. R., Zollner, R. D. L., & Netto, F. M. (2016). Whey protein isolate hydrolysates obtained with free and immobilized Alcalase: Characterization and detection of residual allergens. Food Research International, 83, 112–120.

    CAS  Google Scholar 

  • Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. International Dairy Journal, 16(11), 1306–1314.

    CAS  Google Scholar 

  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237.

    CAS  PubMed  Google Scholar 

  • Ripolles, D., Harouna, S., Parrón, J. A., Calvo, M., Pérez, M. D., Carramiñana, J. J., & Sánchez, L. (2015). Antibacterial activity of bovine milk lactoferrin and its hydrolysates prepared with pepsin, chymosin and microbial rennet against foodborne pathogen Listeria monocytogenes. International Dairy Journal, 45, 15–22.

    CAS  Google Scholar 

  • Rosa, L. O. L. D., Santana, M. C., Avezedo, T. L., Brígida, A. I. S., Godoy, R., Pacheco, S., & Cabral, L. M. C. (2018). A comparison of dual-functional whey hydrolysates by the use of commercial proteases. Food Science and Technology, 38(suppl 1), 31–36.

    Google Scholar 

  • Ruiz‐Ruiz, J., Dávila‐Ortíz, G., Chel‐Guerrero, L.,& Betancur‐Ancona, D. (2013). Angiotensin I‐converting enzyme inhibitory and antioxidant peptide fractions from hard‐to‐cook bean enzymatic hydrolysates. Journal of Food Biochemistry, 37(1), 26–35.

  • Rutherfurd-Markwick, K. J. (2012). Food proteins as a source of bioactive peptides with diverse functions. British Journal of Nutrition, 108(S2), S149–S157.

    CAS  Google Scholar 

  • Salami, M., Moosavi-Movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertle, T., Chobert, J. M., & Pourtakdoost, S. (2010). Improvement of the antimicrobial and antioxidant activities of camel and bovine whey proteins by limited proteolysis. Journal of Agricultural and Food Chemistry, 58(6), 3297–3302.

    CAS  PubMed  Google Scholar 

  • Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptides, 31(10), 1949–1956.

    CAS  PubMed  Google Scholar 

  • Schmidt, C. G., & Salas-Mellado, M. (2009). Influência da ação das enzimas alcalase e flavourzyme no grau de hidrólise das proteínas de carne de frango. Química Nova, 32(5), 1144–1150.

    CAS  Google Scholar 

  • Shu, C., Cai, J., Huang, L., Zhu, X., & Xu, Z. (2011). Biocatalytic production of ethyl butyrate from butyric acid with immobilized Candida rugosa lipase on cotton cloth. Journal of Molecular Catalysis B: Enzymatic, 72(3-4), 139–144.

    CAS  Google Scholar 

  • Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Souza, M. W. S. D., Lopes Junior, C. D. O., & Afonso, W. D. O. (2012). Analysis of whey protein hydrolysates: peptide profile and ACE inhibitory activity. Brazilian Journal of Pharmaceutical Sciences, 48(4), 747–757.

    CAS  Google Scholar 

  • Sinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. International Journal of Peptides, 2013.

  • Synowiecki, J., Sikorska-Siondalska, A., & El-Bedawey, A. E. F. (1987). Adsorption of enzymes on krill chitin modified with carbon disulfide. Biotechnology and Bioengineering, 29(3), 352–354.

    CAS  PubMed  Google Scholar 

  • Tardioli, P. W., Pedroche, J., Giordano, R. L., Fernández-Lafuente, R., & Guisan, J. M. (2003). Hydrolysis of proteins by immobilized-stabilized alcalase-glyoxyl agarose. Biotechnology Progress, 19(2), 352–360.

    CAS  PubMed  Google Scholar 

  • Théolier, J., Hammami, R., Labelle, P., Fliss, I., & Jean, J. (2013). Isolation and identification of antimicrobial peptides derived by peptic cleavage of whey protein isolate. Journal of Functional Foods, 5(2), 706–714.

    Google Scholar 

  • Vossenberg, P., Beeftink, H. H., Nuijens, T., Quaedflieg, P. J. L. M., Stuart, M. C., & Tramper, J. (2012). Performance of Alcalase formulations in near dry organic media: Effect of enzyme hydration on dipeptide synthesis. Journal of Molecular Catalysis B: Enzymatic, 78, 24–31.

    CAS  Google Scholar 

  • Yadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D., & Surampalli, R. Y. (2015). Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, 33(6), 756–774.

    CAS  PubMed  Google Scholar 

  • You, S. J., Udenigwe, C. C., Aluko, R. E., & Wu, J. (2010). Multifunctional peptides from egg white lysozyme. Food Research International, 43(3), 848–855.

    CAS  Google Scholar 

  • Zhang, Q. X., Wu, H., Ling, Y. F., & Lu, R. R. (2013). Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS. Journal of Dairy Research, 80(3), 367–373.

    CAS  Google Scholar 

  • Zheng, H., Shen, X., Bu, G., & Luo, Y. (2008). Effects of pH, temperature and enzyme-to-substrate ratio on the antigenicity of whey protein hydrolysates prepared by Alcalase. International Dairy Journal, 18(10-11), 1028–1033.

    CAS  Google Scholar 

Download references

Funding

This study was financially supported by FAPESP (Process 2012/07680-4 and 2014/12563-2). Clariana Zanutto Pualino da Cruz thanked CNPq (Process 141137/2014-2) and CAPES (Process PDSE 88881.132260/2016-01).

Author information

Authors and Affiliations

Authors

Contributions

Clariana Zanutto Paulino da Cruz: designed the experiments and performed the immobilization of Alcalase in corn cob powder and hydrolysis of whey proteins, in addition to biological tests. Saulo Santesso Garrido: responsible for fractionation of the hydrolysates by RP-HPLC. Luis Henrique Souza Guimaraes and Ricardo José de Mendonça: responsible for MALDI-TOF fractions analysis. Taís Maria Bauab and Matheus Aparecido dos Santos Ramos: collaborated with antifungal activity. Rubens Monti, Ariela Veloso de Paula, and Gabriella Massolini: collaborated in planning, experimental design, and article review.

Corresponding author

Correspondence to Clariana Zanutto Paulino da Cruz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz, C.Z.P., de Mendonça, R.J., Guimaraes, L.H.S. et al. Assessment of the Bioactive Potential of Cheese Whey Protein Hydrolysates Using Immobilized Alcalase. Food Bioprocess Technol 13, 2120–2130 (2020). https://doi.org/10.1007/s11947-020-02552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02552-4

Keywords

Navigation