Skip to main content
Log in

Microbial and enzymatic hydrolysis of dromedary whey proteins and caseins: techno-functional, radical scavenging, antimicrobial properties and incorporation in beverage formulation

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Comparative study of functional properties, radical scavenging and antimicrobial activities of dromedary whey protein and casein hydrolysates was investigated. Dromedary protein hydrolysates were prepared by treatment with digestive proteases (pepsin and pancreatin) and by the proteolytic system of two lactic acid bacteria (Streptococcus thermophilus and Lactobacillus bulgaricus). Solubility and interfacial properties like emulsifying capacity are improved after enzymatic hydrolysis of both whey protein and casein. Whereas, foam capacity and stability are more important in whey protein hydrolysates than casein hydrolysates and are widely influenced by the method of hydrolysis. All hydrolysates showed radical scavenging activities. The highest antioxidant activity is exhibited by WPHE (whey protein hydrolysated by gastro-intestinal enzymes “pepsin and pancreatin”) for DPPH (2,2-diphenyl-1-picrylhydrazyl) test and CNHE (casein hydrolysated by pepsin and pancreatin) for ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay. Further, whey protein hydrolysates displayed antibacterial activity and WPHE was the most effective, particularly against Escherichia coli and Staphylococcus epidermidis. Based on the results, we conclude that WPHE has great technological applicability in food ingredients, as a promising source of functional hydrolysate with antioxidant and antimicrobial activities. For this reason, WPHE was added to the dromedary milk based beverage and chemical, microbiological and sensory properties of the resulting product were investigated. Formulated beverage flavored with strawberry or banana possessed a good microbiological quality. The sensory analysis demonstrated a good acceptance mainly in taste and consistency of the beverage samples. There is only significant difference in the color of the different formulated beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.A. Alenisan, H.H. Alqattan, L.S. Tolbah, A.B. Shori, Antioxidant properties of dairy products fortified with natural additives: a review. J. Assoc. Arab. Univ. Basic Appl. Sci. 24, 101–106 (2017)

    Google Scholar 

  2. M.M. Tajkarimi, S.A. Ibrahim, D.O. Cliver, Antimicrobial herb and spice compounds in food. Food Control 21, 1199–1218 (2010)

    CAS  Google Scholar 

  3. Z. Jrad, H. El Hatmi, I. Adt, J.M. Girardet, C. Cakir-Kiefer, J. Jardin, P. Degraeve, T. Khorchani, N. Oulahal, Effect of digestive enzymes on antimicrobial, radical scavenging and angiotensin I-converting enzyme inhibitory activities of camel colostrum and milk proteins. Dairy Sci. Technol. 94, 205–224 (2014)

    CAS  Google Scholar 

  4. Z. Jrad, J.M. Girardet, I. Adt, N. Oulahal, P. Degraeve, T. Khorchani, H. El Hatmi, Antioxidant activity of camel milk casein before and after in vitro simulated enzymatic digestion. Mljekarstvo 64, 287–294 (2014)

    Google Scholar 

  5. H. El-Hatmi, Z. Jrad, T. Khorchani, J. Jardin, C. Poirson, C. Perrin, C. Cakir-Kiefer, J.M. Girardet, Identification of bioactive peptides derived from caseins, glycosylation-dependent cell adhesion molecule-1 (GlyCAM-1), and peptidoglycan recognition protein-1 (PGRP-1) in fermented camel milk. Int. Dairy J. 56, 159–168 (2016)

    CAS  Google Scholar 

  6. D. Almi-Sebbane, I. Adt, P. Degraeve, J. Jardin, E. Bettler, R. Terreux, N. Oulahal, A. Mati, Casesidin-like anti-bacterial peptides in peptic hydrolysate of camel milk β-casein. Int. Dairy J. 86, 49–56 (2018)

    CAS  Google Scholar 

  7. O.A. Al haj, H.A. Alkanhal, Compositional, technological and nutritional aspects of dromedary camel milk. Int. Dairy J. 20, 811–821 (2010)

    CAS  Google Scholar 

  8. O.U. Beg, H.V. Bahr-Lindstrom, Z.H. Zaidi, H. Jornvall, A camel milk whey protein rich in half-cystine: primary structure, assessment of variations, internal repeat patterns, and relationships with neurophysin and other active polypeptides. Eur. J. Biochem. 159, 195–201 (1986)

    CAS  PubMed  Google Scholar 

  9. H. El-Hatmi, J.M. Girardet, J.L. Gaillard, M.H. Yahyaoui, H. Attia, Characterisation of whey proteins of camel (Camelus dromedarius) milk and colostrum. Small Rumin. Res. 70, 267–271 (2007)

    Google Scholar 

  10. E. El-Agamy, M. Nawar, S.M. Shamsia, S.F.W. Awad, G. Haenlein, Are camel milk proteins convenient to the nutrition of cow milk allergic children? Small Rumin. Res. 82, 16 (2009)

    Google Scholar 

  11. Y. Hailu, E.B. Hansan, E. Seifu, M. Eshetu, R. Ipsen, S. Kappeler, Functional and technological properties of camel milk proteins: a review. J. Dairy Res. 83, 422–429 (2016)

    CAS  PubMed  Google Scholar 

  12. L.C. Laleye, B. Jobe, A.A.H. Wasesa, Comparative study on heat stability and functionality of camel and bovine whey proteins. J. Dairy Sci. 91, 4527–4534 (2008)

    CAS  PubMed  Google Scholar 

  13. R. Lajnaf, L. Picart-Palmade, E. Cases, H. Attia, S. Marchesseau, M.A. Ayadi, The foaming properties of camel and bovine whey: the impact of pH and heat treatment. Food Chem. 240, 295–303 (2018)

    CAS  PubMed  Google Scholar 

  14. R. Lajnaf, L. Picart-Palmade, H. Attia, S. Marchesseau, M.A. Ayadi, The effect of pH and heat treatments on the foaming properties of purified α-lactalbumin from camel milk. Colloids Surf. B 156, 55–61 (2017)

    CAS  Google Scholar 

  15. S. Momen, M. Salami, F. Alavi, Z. Emam-Djomeh, A.A. Moosavi-Movahedi, The techno-functional properties of camel whey protein compared to bovine whey protein for fabrication a model high protein emulsion. LWT Food Sci. Technol. 101, 543–550 (2019)

    CAS  Google Scholar 

  16. J.E. Kinsella, Functional properties of protein foods. Crit. Rev. Food Sci. Nutr. 1, 219–229 (1976)

    Google Scholar 

  17. A. Mahajan, S. Dua, Salts and pH induced changes in functional properties of amaranth (Amaranthus tricolor L.) seed meal. Cereal Chem. 79, 834–837 (2002)

    CAS  Google Scholar 

  18. E. Dickinson, M. Golding, Influence of calcium ions on creaming and rheology of emulsions containing sodium caseinate. Colloids Surf. A 144, 167–177 (1998)

    CAS  Google Scholar 

  19. F. Tamm, S. Herbst, A. Brodkorb, S. Drusch, Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocoll. 58, 204–214 (2016)

    CAS  Google Scholar 

  20. C.I. Onwulata, P. Tomasula, Whey texturization: a way forward. Food Technol. 58, 50–55 (2004)

    Google Scholar 

  21. D.R. Janiaski, T.C. Pimentel, A.G. Cruz, S.H. Prudencio, Strawberry-flavored yogurts and whey beverages: what is the sensory profile of the ideal product? J. Dairy Sci. 99, 5273–5283 (2016)

    CAS  PubMed  Google Scholar 

  22. A.G. Cruz, A.S. de Sant’Ana, M.M. Macchione, Â.M. Teixeira, F.L. Schmidt, Milk drink using whey butter cheese (queijo manteiga) and acerola juice as a potential source of vitamin C. Food Bioprocess. Technol. 2, 368–373 (2009)

    CAS  Google Scholar 

  23. P. Saha, P.R. Ray, P.K. Ghatak, S.K. Bag, T. Hazra, Physico-chemical quality and storage stability of fermented Chhana whey beverages. Indian J. Dairy Sci. 70, 398–403 (2017)

    Google Scholar 

  24. J.T. Guimarães, E.K. Silva, V.O. Alvarenga, A.L.R. Costa, R.L. Cunha, A.S. Sant'Anna, M.Q. Freitas, M.A.A. Meireles, A.G. Cruz, Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason. Sonochem. 44, 251–260 (2018)

    PubMed  Google Scholar 

  25. F.P. Souza, C.F. Balthazar, J.T. Guimarães, T.C. Pimentel, E.A. Esmerino, M.Q. Freitas, R.S.L. Raices, M.C. Silva, A.G. Cruz, The addition of xyloligoosaccharide in strawberry-flavored whey beverage. LWT-Food Sci. Technol. 109, 118–122 (2019)

    CAS  Google Scholar 

  26. M. Salami, R. Yousefi, M.R. Ehsani, S.H. Razavi, J.M. Chobert, T. Haertlé, A.A. Saboury, M.S. Atri, A. Niasari-Naslaji, F. Ahmad, A.A. Moosavi-Movahedi, Enzymatic digestion and antioxidant activity of the native and molten globule states of camel α-lactalbumin: possible significance for use in infant formula. Int. Dairy J. 19, 518–523 (2009)

    CAS  Google Scholar 

  27. Z. Jrad, H. El-Hatmi, I. Adt, S. Gouin, J. Jardin, O. Oussaief, M. Dbara, S. Arroum, T. Khorchani, P. Degraeve, N. Oulahal, Antilisterial activity of dromedary lactoferrin peptic hydrolysates. J. Dairy Sci. 102, 4844–4856 (2019)

    CAS  PubMed  Google Scholar 

  28. L. Miclo, E. Roux, M. Genay, E. Brusseaux, C. Poirson, N. Jameh, C. Perrin, A. Dary, Variability of hydrolysis of β-, αs1-, and αs2-caseins by 10 strains of Streptococcus thermophilus and resulting bioactive peptides. J. Agric. Food Chem. 60, 554–565 (2012)

    CAS  PubMed  Google Scholar 

  29. C. Dupas, I. Adt, A. Cottaz, R. Boutrou, D. Molle, J. Jardin, T. Jouvet, P. Degraeve, A chromatographic procedure for semi-quantitative evaluation of casein phosphor peptides in cheese. Dairy Sci. Technol. 89, 519–529 (2009)

    CAS  Google Scholar 

  30. B. Sammartin, O. Diaz, L. Rodriguez-Turienzo, A. Cobos, Functional properties of caprine whey protein concentrates obtained from clarified cheese whey. Small Rumin. Res. 110, 52–56 (2013)

    Google Scholar 

  31. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 249–254 (1976)

    Google Scholar 

  32. L.R. Beuchat, J.P. Cherry, M.R. Quinn, Physicochemical properties of peanut flour as affected by proteolysis. J. Agric. Food Chem. 23, 616–620 (1975)

    CAS  PubMed  Google Scholar 

  33. L.R. Beuchat, Functional and electrophoretic characteristics of succinylated peanut flour protein. J. Agric. Food Chem. 25, 258–261 (1977)

    CAS  Google Scholar 

  34. L.G. Phillips, J.B. German, T.E. Oneill, E.A. Foegeding, V.R. Harwalkar, A. Kilara, B.A. Lewis, M.E. Mangino, C.V. Morr, J.M. Regenstein, D.M. Smith, J.E. Kinsella, Standardized procedure for measuring foaming properties of three proteins, a collaborative study. J. Food Sci. 55, 1441–1453 (1990)

    CAS  Google Scholar 

  35. P. Bersuder, M. Hole, G. Smith, Antioxidants from a heated histidine glucose model system I: investigation of the antioxidant role of histidine and isolation of antioxidants by high performance liquid chromatography. J. Am. Oil Chem. Soc. 75, 181–187 (1998)

    CAS  Google Scholar 

  36. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)

    CAS  PubMed  Google Scholar 

  37. Z. Jrad, H. El Hatmi, I. Fguiri, S. Arroum, M. Assadi, T. Khorchani, Antibacterial activity of lactic acid bacteria isolated from Tunisian camel milk. Afr. J. Microbiol. Res. 7, 1002–1008 (2013)

    Google Scholar 

  38. R. Sinha, C. Radha, J. Prakash, P. Kaul, Whey protein hydrolysate: functional properties, nutritional quality and utilization in beverage formulation. Food Chem. 101, 1481–1491 (2007)

    Google Scholar 

  39. E. Dickinson, Stabilising emulsion-based colloidal structures with mixed food ingredients. J. Sci. Food Agric. 93, 710–721 (2013)

    CAS  PubMed  Google Scholar 

  40. D. Kumar, M.K. Chatli, R. Singh, N. Mehta, P. Kumar, Antioxidant and antimicrobial activity of camel milk casein hydrolysates and its fractions. Small Rumin. Res. 139, 20–25 (2016)

    Google Scholar 

  41. M. Salami, R. Yousefi, M.R. Ehsani, M. Dalgalarrondo, J.M. Chobert, T. Haertlé, S.H. Razavi, A.A. Saboury, A. Niasari-Naslaji, A.A. Moosavi-Movahedi, Kenitic characterization of hydrolysis of camel and bovine milk proteins by pancreatic enzymes. Int. Dairy J. 18, 1097–1102 (2008)

    CAS  Google Scholar 

  42. Z. Jrad, H. El Hatmi, I. Adt, T. Khorchani, P. Degraeve, N. Oulahal, Anti-microbial activity of camel milk casein and its hydrolysates. Acta Alim. 44, 609–616 (2015)

    CAS  Google Scholar 

  43. A.E. Hangerman, K.M. Riedl, G.A. Jones, K.N. Sovik, N.T. Ritchard, P.W. Hartzfeld, T.L. Riechel, High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 46, 1887–1892 (1998)

    Google Scholar 

  44. M. Shukla, Y. Jha, S. Admassu, Development of probiotic beverage from whey and pineapple juice. J. Food Process. Technol. 4, 2–4 (2013)

    Google Scholar 

  45. U. Council Directive, Directive laying down the health rules for the production and placing on the market of raw milk, heat-treated milk and milk-based products. (1992).

  46. S.M.H. Kumar, D. Saxena, L. Sabikhi, Developments in whey based beverages. Indian J. Dairy Sci. 66, 281–287 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Isabelle ADT (University of Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d’Accueiln°3733), IUT Lyon 1, 01000 Bourg en Bresse, France) for his kind help with gel filtration analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeineb Jrad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jrad, Z., Oussaief, O., Khorchani, T. et al. Microbial and enzymatic hydrolysis of dromedary whey proteins and caseins: techno-functional, radical scavenging, antimicrobial properties and incorporation in beverage formulation. Food Measure 14, 1–10 (2020). https://doi.org/10.1007/s11694-019-00261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00261-x

Keywords

Navigation