Skip to main content
Log in

Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The phytohormone ethylene exerts numerous beneficial and detrimental effects on postharvest quality and storage life of fruit and vegetables. In view of the current global challenge of reducing postharvest losses and waste of fruit and vegetables, the importance of ethylene management in the supply chain is paramount. For this purpose, various methods have been applied along the supply chain over the years; however, effective management of ethylene under real-time storage and transport conditions still remains a challenging task. This review explores the potential of photocatalytic and photochemical oxidation of ethylene for effective removal of this gas along the value chain of fruit and vegetables. These techniques involve the use of ultraviolet (UV) radiation with or without a catalyst. In photocatalytic oxidation, a semiconductor such as titanium dioxide is essential which acts as a photocatalyst on irradiation with UV light and thus facilitates the oxidation of ethylene at its surface, whereas in photochemical oxidation, extreme short wave (i.e. below 200 nm) vacuum ultraviolet radiation (VUV) consisting of high-energy photons eliminates ethylene in the gaseous state. This review gives a brief overview of current commercial techniques used in ethylene removal and then focuses on the photocatalytic and the photochemical oxidation of ethylene and the combination of both methods. The various factors affecting these processes are also discussed including the advantages and the drawbacks associated with them, and current applications of these methods in fruit and vegetable storage systems are highlighted. In addition, a future outlook on the application of these methods in postharvest storage of fresh produce is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anpo, M., & Takeuchi, M. (2003). The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis, 216(1), 505–516.

    Article  CAS  Google Scholar 

  • Augugliaro, V., Bellardita, M., Loddo, V., Palmisano, G., Palmisano, L., & Yurdakal, S. (2012). Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 224–245.

    Article  CAS  Google Scholar 

  • Baek, M. H., Yoon, J. W., Hong, J. S., & Suh, J. K. (2013). Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor—adsorption and photocatalytic activity. Applied Catalysis A: General, 450, 222–229.

    Article  CAS  Google Scholar 

  • Bailén, G., Guillén, F., Castillo, S., Serrano, M., Valero, D., & Martínez-Romero, D. (2006). Use of activated carbon inside modified atmosphere packages to maintain tomato fruit quality during cold storage. Journal of Agricultural and Food Chemistry, 54(6), 2229–2235.

    Article  CAS  Google Scholar 

  • Bapat, V. A., Trivedi, P. K., Ghosh, A., Sane, V. A., Ganapathi, T. R., & Nath, P. (2010). Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnology Advances, 28(1), 94–107.

    Article  CAS  Google Scholar 

  • Belapurkar, A. D., Kamble, V. S., & Dey, G. R. (2010). Photo-oxidation of ethylene in gas phase and methanol and formic acid in liquid phase on synthesized TiO2 and Au/TiO2 catalysts. Materials Chemistry and Physics, 123(2), 801–805.

    Article  CAS  Google Scholar 

  • Blanke, M. M. (2014). Reducing ethylene levels along the food supply chain: a key to reducing food waste? Journal of the Science of Food and Agriculture, 94(12), 2357–2361.

    Article  CAS  Google Scholar 

  • Blankenship, S. M., & Dole, J. M. (2003). 1-Methylcyclopropene: a review. Postharvest Biology and Technology, 28(1), 1–25.

    Article  CAS  Google Scholar 

  • Bodaghi, H., Mostofi, Y., Oromiehie, A., Zamani, Z., Ghanbarzadeh, B., Costa, C., et al. (2013). Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT-Food Science and Technology, 50(2), 702–706.

    Article  CAS  Google Scholar 

  • Bower, J. H., Biasi, W. V., & Mitcham, E. J. (2003). Effect of ethylene in the storage environment on quality of ‘Bartlett pears’. Postharvest Biology and Technology, 28(3), 371–379.

    Article  CAS  Google Scholar 

  • Cao, L., Gao, Z., Suib, S. L., Obee, T. N., Hay, S. O., & Freihaut, J. D. (2000). Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: studies of deactivation and regeneration. Journal of Catalysis, 196(2), 253–261.

    Article  CAS  Google Scholar 

  • Chang, K. L., Sekiguchi, K., Wang, Q., & Zhao, F. (2013). Removal of ethylene and secondary organic aerosols using UV-C254 with TiO2 catalyst. Aerosol and Air Quality Research, 13, 618–626.

    CAS  Google Scholar 

  • Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), 2891–2959.

    Article  CAS  Google Scholar 

  • Conte, J., El Blidi, A., Rigal, L., & Torres, L. (1992). Ethylene removal in fruit storage rooms: a catalytic oxidation reactor at low temperature. Journal of Food Engineering, 15(4), 313–329.

    Article  Google Scholar 

  • de Chiara, M. L. V., Amodio, M. L., Scura, F., Spremulli, L., & Colelli, G. (2014). Design and preliminary test of a fluidised bed photoreactor for ethylene oxidation on mesoporous mixed SiO2/TiO2 nanocomposites under UV-A illumination. Journal of Agricultural Engineering, 45(4), 146–152.

    Article  Google Scholar 

  • de Chiara, M. L. V., Pal, S., Licciulli, A., Amodio, M. L., & Colelli, G. (2015). Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: effects on the ripening of mature green tomatoes. Biosystems Engineering, 132, 61–70.

    Article  Google Scholar 

  • Delhoménie, M. C., & Heitz, M. (2005). Biofiltration of air: a review. Critical Reviews in Biotechnology, 25(1–2), 53–72.

    Article  CAS  Google Scholar 

  • El Blidi, A., Rigal, L., Malmary, G., Molinier, J., & Torres, L. (1993). Ethylene removal for long term conservation of fruits and vegetables. Food Quality and Preference, 4(3), 119–126.

    Article  Google Scholar 

  • Elsgaard, L. (2000). Ethylene removal at low temperatures under biofilter and batch conditions. Applied and Environmental Microbiology, 66(9), 3878–3882.

    Article  CAS  Google Scholar 

  • Fan, X., & Mattheis, J. P. (2000a). Yellowing of broccoli in storage is reduced by 1-methylcyclopropene. Hortscience, 35(5), 885–887.

    CAS  Google Scholar 

  • Fan, X., & Mattheis, J. P. (2000b). Reduction of ethylene-induced physiological disorders of carrots and iceberg lettuce by 1-methylcyclopropene. Hortscience, 35(7), 1312–1314.

    CAS  Google Scholar 

  • FAO (2015). http://www.fao.org/savefood/resources/keyfindings/infographics/fruit/ en/. Accessed 17 April 2015.

  • Farhanian, D., & Haghighat, F. (2014). Photocatalytic oxidation air cleaner: identification and quantification of by-products. Building and Environment, 72, 34–43.

    Article  Google Scholar 

  • Fu, X., Clark, L. A., Zeltner, W. A., & Anderson, M. A. (1996). Effects of reaction temperature and water vapour content on the heterogeneous photocatalytic oxidation of ethylene. Journal of Photochemistry and Photobiology A: Chemistry, 97(3), 181–186.

    Article  CAS  Google Scholar 

  • Fu, P., Zhang, P., & Li, J. (2011). Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254 + 185 nm irradiation. Applied Catalysis B: Environmental, 105(1), 220–228.

    Article  CAS  Google Scholar 

  • Fu, P., Zhang, P., & Li, J. (2012). Simultaneous elimination of formaldehyde and ozone byproduct using noble metal modified TiO2 films in the gaseous VUV photocatalysis. International Journal of Photoenergy. doi:10.1155/2012/174862.

    Google Scholar 

  • Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238, 37–38.

    Article  CAS  Google Scholar 

  • García, M., Casariego, A., Díaz, R., & Roblejo, L. (2014). Effect of edible chitosan/zeolite coating on tomatoes quality during refrigerated storage. Emirates Journal of Food and Agriculture, 26(3), 238.

    Article  Google Scholar 

  • Garner, D., Crisosto, C. H., & Otieza, E. (2001). Controlled atmosphere storage and aminoethoxyvinylglycine postharvest dip delay post cold storage softening of ‘Snow King' peach. HortTechnology, 11(4), 598–602.

    CAS  Google Scholar 

  • Hauchecorne, B., Tytgat, T., Verbruggen, S. W., Hauchecorne, D., Terrens, D., Smits, M., et al. (2011). Photocatalytic degradation of ethylene: an FTIR in situ study under atmospheric conditions. Applied Catalysis B: Environmental, 105(1), 111–116.

    Article  CAS  Google Scholar 

  • Hay, S. O., Obee, T., Luo, Z., Jiang, T., Meng, Y., He, J., et al. (2015). The viability of photocatalysis for air purification. Molecules, 20(1), 1319–1356.

    Article  CAS  Google Scholar 

  • Hayama, H., Shimada, T., Fujii, H., Ito, A., & Kashimura, Y. (2006). Ethylene-regulation of fruit softening and softening-related genes in peach. Journal of Experimental Botany, 57(15), 4071–4077.

    Article  CAS  Google Scholar 

  • Huang, H., & Li, W. (2011). Destruction of toluene by ozone-enhanced photocatalysis: performance and mechanism. Applied Catalysis B: Environmental, 102(3), 449–453.

    Article  CAS  Google Scholar 

  • Huang, H., Leung, D. Y., Li, G., Leung, M. K., & Fu, X. (2011). Photocatalytic destruction of air pollutants with vacuum ultraviolet (VUV) irradiation. Catalysis Today, 175(1), 310–315.

    Article  CAS  Google Scholar 

  • Huang, H., Ye, X., Huang, H., Hu, P., Zhang, L., & Leung, D. Y. (2013). Photocatalytic oxidation of gaseous benzene under 185 nm UV irradiation. International Journal of Photoenergy, 2013, 1–6.

    Google Scholar 

  • Huang, H., Lu, H., Huang, H., Wang, L., Zhang, J., & Leung, D. Y. (2016a). Recent development of VUV-based processes for air pollutant degradation. Frontiers in Environmental Science, 4, 17.

    Google Scholar 

  • Huang, H., Lu, H., Zhan, Y., Liu, G., Feng, Q., Huang, H., ... & Ye, X. (2016b). VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: effect on transition metal catalyst. Applied Surface Science.

  • Hur, J. S., Oh, S. O., Lim, K. M., Jung, J. S., & Koh, Y. J. (2005). Novel effects of TiO2 photocatalytic ozonation on control of postharvest fungal spoilage of kiwifruit. Postharvest Biology and Technology, 35(1), 109–113.

    Article  CAS  Google Scholar 

  • Hurr, B. M., Huber, D. J., Vallejos, C. E., & Talcott, S. T. (2009). Developmentally dependent responses of detached cucumber (Cucumis sativus L.) fruit to exogenous ethylene. Postharvest Biology and Technology, 52(2), 207–215.

    Article  CAS  Google Scholar 

  • Hussain, M., Bensaid, S., Geobaldo, F., Saracco, G., & Russo, N. (2010). Photocatalytic degradation of ethylene emitted by fruits with TiO2 nanoparticles. Industrial & Engineering Chemistry Research, 50(5), 2536–2543.

    Article  CAS  Google Scholar 

  • Hussain, M., Russo, N., & Saracco, G. (2011). Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chemical Engineering Journal, 166(1), 138–149.

    Article  CAS  Google Scholar 

  • Ibhadon, A. O., & Fitzpatrick, P. (2013). Heterogeneous photocatalysis: recent advances and applications. Catalysts, 3(1), 189–218.

    Article  CAS  Google Scholar 

  • Ibhadon, A. O., Arabatzis, I. M., Falaras, P., & Tsoukleris, D. (2007). The design and photoreaction kinetic modeling of a gas-phase titania foam packed bed reactor. Chemical Engineering Journal, 133(1), 317–323.

    Article  CAS  Google Scholar 

  • Jabbar, A., & East, A. R. (2016). Quantifying the ethylene induced softening and low temperature breakdown of ‘Hayward’ kiwifruit in storage. Postharvest Biology and Technology, 113, 87–94.

    Article  CAS  Google Scholar 

  • Jeong, J., Sekiguchi, K., & Sakamoto, K. (2004). Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Chemosphere, 57(7), 663–671.

    Article  CAS  Google Scholar 

  • Jeong, J., Sekiguchi, K., Lee, W., & Sakamoto, K. (2005). Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates. Journal of Photochemistry and Photobiology A: Chemistry, 169(3), 279–287.

    Article  CAS  Google Scholar 

  • Jeong, M. G., Park, E. J., Seo, H. O., Kim, K. D., Kim, Y. D., & Lim, D. C. (2013). Humidity effect on photocatalytic activity of TiO2 and regeneration of deactivated photocatalysts. Applied Surface Science, 271, 164–170.

    Article  CAS  Google Scholar 

  • Jiang, W., Sheng, Q., Zhou, X. J., Zhang, M. J., & Liu, X. J. (2002). Regulation of detached coriander leaf senescence by 1-methylcyclopropene and ethylene. Postharvest Biology and Technology, 26(3), 339–345.

    Article  CAS  Google Scholar 

  • Jiang, Z., Chen, M., Shi, J., Yuan, J., & Shangguan, W. (2015). Catalysis removal of indoor volatile organic compounds in room temperature: from photocatalysis to active species assistance catalysis. Catalysis Surveys from Asia, 19(1), 1–16.

    Article  CAS  Google Scholar 

  • Jozwiak, Z. B., Bartsch, J. A., & Aneshansley, D. J. (2001). Experimental verification of a model describing UV initiated decomposition of ethylene in CA storage of apples. Acta Horticulturae, 600, 707–710.

    Google Scholar 

  • Kartheuser, B., & Boonaert, C. (2007). Photocatalysis: a powerful technology for cold storage applications. Journal of Advanced Oxidation Technologies, 10(1), 107–110.

    Article  CAS  Google Scholar 

  • Kataoka, S., Tompkins, D. T., Zeltner, W. A., & Anderson, M. A. (2002). Photocatalytic oxidation in the presence of microwave irradiation: observations with ethylene and water. Journal of Photochemistry and Photobiology A: Chemistry, 148(1), 323–330.

    Article  CAS  Google Scholar 

  • Keller, N., Ducamp, M. N., Robert, D., & Keller, V. (2013). Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation. Chemical Reviews, 113(7), 5029–5070.

    Article  CAS  Google Scholar 

  • Kim, J. O. (2003). Degradation of benzene and ethylene in biofilters. Process Biochemistry, 39(4), 447–453.

    Article  CAS  Google Scholar 

  • Kim, J., Zhang, P., Li, J., Wang, J., & Fu, P. (2014). Photocatalytic degradation of gaseous toluene and ozone under UV 254 + 185 nm irradiation using a Pd-deposited TiO2 film. Chemical Engineering Journal, 252, 337–345.

    Article  CAS  Google Scholar 

  • Kudo, A. (2011). Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bulletin, 36(01), 32–38.

    Article  CAS  Google Scholar 

  • Kumar, S., Fedorov, A. G., & Gole, J. L. (2005). Photodegradation of ethylene using visible light responsive surfaces prepared from titania nanoparticle slurries. Applied Catalysis B: Environmental, 57(2), 93–107.

    Article  CAS  Google Scholar 

  • Lawton, A. R. (1991). Measurement of ethylene gas prior to and during transport. 19th International Congress of Refrigeration, IIR/IIF, Montreal, 1–11.

  • Lazar, M. A., Varghese, S., & Nair, S. S. (2012). Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts, 2(4), 572–601.

    Article  CAS  Google Scholar 

  • Lee, D. J., Park, Y. K., Kim, S. J., Lee, H., & Jung, S. C. (2015). Photo-catalytic destruction of ethylene using microwave discharge electrodeless lamp. Korean Journal of Chemical Engineering, 32(6), 1188–1193.

    Article  CAS  Google Scholar 

  • Li, W., Zhang, M., & Yu, H. Q. (2006). Study on hypobaric storage of green asparagus. Journal of Food Engineering, 73(3), 225–230.

    Article  CAS  Google Scholar 

  • Li, D. L., Shi, Q. P., & Xu, W. C. (2012). Effects of zeolite modified LDPE film on banana fresh keeping. Advanced Materials Research, 393, 724–728.

    Article  CAS  Google Scholar 

  • Li, L., Lichter, A., Chalupowicz, D., Gamrasni, D., Goldberg, T., Nerya, O., et al. (2016). Effects of the ethylene-action inhibitor 1-methylcyclopropene on postharvest quality of non-climacteric fruit crops. Postharvest Biology and Technology, 111, 322–329.

    Article  CAS  Google Scholar 

  • Limtrakul, J., Nanok, T., Jungsuttiwong, S., Khongpracha, P., & Truong, T. N. (2001). Adsorption of unsaturated hydrocarbons on zeolites: the effects of the zeolite framework on adsorption properties of ethylene. Chemical Physics Letters, 349(1), 161–166.

    Article  CAS  Google Scholar 

  • Lin, L., Chai, Y., Zhao, B., Wei, W., He, D., He, B., & Tang, Q. (2013). Photocatalytic oxidation for degradation of VOCs. Open Journal of Inorganic Chemistry, 3, 14–25.

    Article  CAS  Google Scholar 

  • Lin, Y. T., Weng, C. H., & Chen, F. Y. (2014a). Key operating parameters affecting photocatalytic activity of visible-light-induced C-doped TiO2 catalyst for ethylene oxidation. Chemical Engineering Journal, 248, 175–183.

    Article  CAS  Google Scholar 

  • Lin, Y. T., Weng, C. H., Hsu, H. J., Huang, J. W., Srivastav, A. L., & Shiesh, C. C. (2014b). Effect of oxygen, moisture, and temperature on the photo oxidation of ethylene on N-doped TiO2 catalyst. Separation and Purification Technology, 134, 117–125.

    Article  CAS  Google Scholar 

  • Liu, Z. Y., & Jiang, W. B. (2006). Lignin deposition and effect of postharvest treatment on lignification of green asparagus (Asparagus officinalis L.). Plant Growth Regulation, 48(2), 187–193.

    Article  CAS  Google Scholar 

  • López, R., & Gómez, R. (2012). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 61(1), 1–7.

    Article  CAS  Google Scholar 

  • Macwan, D. P., Dave, P. N., & Chaturvedi, S. (2011). A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science, 46(11), 3669–3686.

    Article  CAS  Google Scholar 

  • Mahajan, P. V., Caleb, O. J., Singh, Z., Watkins, C. B., & Geyer, M. (2014). Postharvest treatments of fresh produce. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. doi:10.1098/rsta.2013.0309.

    Google Scholar 

  • Maneerat, C., & Hayata, Y. (2006a). Efficiency of TiO2 photocatalytic reaction on delay of fruit ripening and removal of off-flavours from the fruit storage atmosphere. Transactions of the ASABE, 49(3), 833–837.

    Article  CAS  Google Scholar 

  • Maneerat, C., & Hayata, Y. (2006b). Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. International Journal of Food Microbiology, 107(2), 99–103.

    Article  CAS  Google Scholar 

  • Maneerat, C., & Hayata, Y. (2008). Gas-phase photocatalytic oxidation of ethylene with TiO2-coated packaging film for horticultural products. Transactions of the ASABE, 51(1), 163–168.

    Article  CAS  Google Scholar 

  • Maneerat, C., Hayata, Y., Egashira, N., Sakamoto, K., Hamai, Z., & Kuroyanagi, M. (2003). Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetable storage. Transactions of the ASAE, 46(3), 725.

    Article  CAS  Google Scholar 

  • Martínez-Romero, D., Bailén, G., Serrano, M., Guillén, F., Valverde, J. M., Zapata, P., et al. (2007). Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: a review. Critical Reviews in Food Science and Nutrition, 47(6), 543–560.

    Article  CAS  Google Scholar 

  • Martínez-Romero, D., Guillén, F., Castillo, S., Zapata, P. J., Serrano, M., & Valero, D. (2009). Development of a carbon-heat hybrid ethylene scrubber for fresh horticultural produce storage purposes. Postharvest Biology and Technology, 51(2), 200–205.

    Article  CAS  Google Scholar 

  • Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmospheric Environment, 43(14), 2229–2246.

    Article  CAS  Google Scholar 

  • Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochimica Acta, 84, 103–111.

    Article  CAS  Google Scholar 

  • Nielsen, M. G., Vesborg, P. C., Hansen, O., & Chorkendorff, I. (2015). Removal of low concentration contaminant species using photocatalysis: elimination of ethene to sub-ppm levels with and without water vapor present. Chemical Engineering Journal, 262, 648–657.

    Article  CAS  Google Scholar 

  • Obee, T. N., & Hay, S. O. (1997). Effects of moisture and temperature on the photooxidation of ethylene on titania. Environmental Science & Technology, 31(7), 2034–2038.

    Article  CAS  Google Scholar 

  • Othman, S. H., Abd Salam, N. R., Zainal, N., Kadir Basha, R., & Talib, R. A. (2014). Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. International Journal of Photoenergy, 2014, 1–6.

    Article  CAS  Google Scholar 

  • Park, D. R., Zhang, J., Ikeue, K., Yamashita, H., & Anpo, M. (1999). Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2. Photocatalysts in the presence of O2 and H2O. Journal of Catalysis, 185(1), 114–119.

    Article  CAS  Google Scholar 

  • Park, D. R., Ahn, B. J., Park, H. S., Yamashita, H., & Anpo, M. (2001). Photocatalytic oxidation of ethylene to CO2 and H2O on ultrafine powdered TiO2 photocatalysts: effect of the presence of O2 and H2O and the addition of Pt. Korean Journal of Chemical Engineering, 18(6), 930–934.

    Article  CAS  Google Scholar 

  • Paz, Y. (2009). Photocatalytic treatment of air: from basic aspects to reactors. Advances in Chemical Engineering, 36, 289–336.

    Article  CAS  Google Scholar 

  • Pesis, E., Ackerman, M., Ben-Arie, R., Feygenberg, O., Feng, X., Apelbaum, A., et al. (2002). Ethylene involvement in chilling injury symptoms of avocado during cold storage. Postharvest Biology and Technology, 24(2), 171–181.

    Article  CAS  Google Scholar 

  • Pranamornkith, T., East, A., & Heyes, J. (2012). Influence of exogenous ethylene during refrigerated storage on storability and quality of Actinidia chinensis (cv. Hort16A). Postharvest Biology and Technology, 64(1), 1–8.

    Article  CAS  Google Scholar 

  • Quici, N., Vera, M. L., Choi, H., Puma, G. L., Dionysiou, D. D., Litter, M. I., & Destaillats, H. (2010). Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254 + 185 nm UV irradiation. Applied Catalysis B: Environmental, 95(3), 312.

    Article  CAS  Google Scholar 

  • Rees, D., Hipps, N., Colgan, R., & Thurston, K. (2011). Ethylene and microbial hotspots in the fresh produce supply chain [final report]. Waste Resources Action Programme (WRAP), Banbury, Oxfordshire, UK.

  • Rodrigo, M. J., & Zacarias, L. (2007). Effect of postharvest ethylene treatment on carotenoid accumulation and the expression of carotenoid biosynthetic genes in the flavedo of orange (Citrus sinensis L. Osbeck) fruit. Postharvest Biology and Technology, 43(1), 14–22.

    Article  CAS  Google Scholar 

  • Rupavatharam, S., East, A. R., & Heyes, J. A. (2015). Re-evaluation of harvest timing in ‘Unique’feijoa using 1-MCP and exogenous ethylene treatments. Postharvest Biology and Technology, 99, 152–159.

    Article  CAS  Google Scholar 

  • Saltveit, M. E. (1999). Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biology and Technology, 15(3), 279–292.

    Article  CAS  Google Scholar 

  • Scariot, V., Paradiso, R., Rogers, H., & De Pascale, S. (2014). Ethylene control in cut flowers: classical and innovative approaches. Postharvest Biology and Technology, 97, 83–92.

    Article  CAS  Google Scholar 

  • Scott, K. J., & Wills, R. B. (1973). Atmospheric pollutants destroyed in an ultra violet scrubber. Laboratory Practice, 22(2), 103–106.

    CAS  Google Scholar 

  • Scott, K. J., Wills, R. B. H., & Patterson, B. D. (1971). Removal by ultra-violet lamp of ethylene and other hydrocarbons produced by bananas. Journal of the Science of Food and Agriculture, 22(9), 496–497.

    Article  CAS  Google Scholar 

  • Seljåsen, R., Hoftun, H., & Bengtsson, G. B. (2001). Sensory quality of ethylene-exposed carrots (Daucus carota L, cv ‘Yukon’) related to the contents of 6-methoxymellein, terpenes and sugars. Journal of the Science of Food and Agriculture, 81(1), 54–61.

    Article  Google Scholar 

  • Shorter, A. J., & Scott, K. J. (1986). Removal of ethylene from air and low oxygen atmospheres with ultraviolet radiation. Lebensmittel-Wissenschaft&Technologie, 19(2), 176–179.

    CAS  Google Scholar 

  • Silverman, F. P., Petracek, P. D., Noll, M. R., & Warrior, P. (2004). Aminoethoxyvinylglycine effects on late-season apple fruit maturation. Plant Growth Regulation, 43(2), 153–161.

    Article  CAS  Google Scholar 

  • Sirisuk, A., Hill, C. G., & Anderson, M. A. (1999). Photocatalytic degradation of ethylene over thin films of titania supported on glass rings. Catalysis Today, 54(1), 159–164.

    Article  CAS  Google Scholar 

  • Sisler, E. C., & Serek, M. (1997). Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiologia Plantarum, 100(3), 577–582.

    Article  CAS  Google Scholar 

  • Sisler, E. C., & Serek, M. (2003). Compounds interacting with the ethylene receptor in plants. Plant Biology, 5, 473–480.

    Article  Google Scholar 

  • Smilanick, J. L. (2003). Use of ozone in storage and packing facilities. Meeting Abstract. Proceedings 99th Meeting of the Washington State Horticultural Association, 131–139.

  • Smith, A. W., Poulston, S., Rowsell, L., Terry, L. A., & Anderson, J. A. (2009). A new palladium-based ethylene scavenger to control ethylene-induced ripening of climacteric fruit. Platinum Metals Review, 53(3), 112–122.

    Article  CAS  Google Scholar 

  • Tanaka, K., Fukuyoshi, J., Segawa, H., & Yoshida, K. (2006). Improved photocatalytic activity of zeolite- and silica-incorporated TiO2 film. Journal of Hazardous Materials, 137(2), 947–951.

    Article  CAS  Google Scholar 

  • Terry, L. A., Ilkenhans, T., Poulston, S., Rowsell, L., & Smith, A. W. (2007). Development of new palladium-promoted ethylene scavenger. Postharvest Biology and Technology, 45(2), 214–220.

    Article  CAS  Google Scholar 

  • Tibbitts, T. W., Cushman, K. E., Fu, X., Anderson, M. A., & Bula, R. J. (1998). Factors controlling activity of zirconia-titania for photocatalytic oxidation of ethylene. Advances in Space Research, 22(10), 1443–1451.

    Article  CAS  Google Scholar 

  • Tytgat, T., Hauchecorne, B., Abakumov, A. M., Smits, M., Verbruggen, S. W., & Lenaerts, S. (2012). Photocatalytic process optimisation for ethylene oxidation. Chemical Engineering Journal, 209, 494–500.

    Article  CAS  Google Scholar 

  • Valero, D., Guillén, F., Valverde, J. M., Castillo, S., & Serrano, M. (2016). Recent developments of 1-methylcyclopropene (1-MCP) treatments on fruit quality attributes. In M. W. Siddiqui (Ed.), Eco-friendly technology for postharvest produce quality (pp 185–201). London: Academic Press.

    Google Scholar 

  • Wang, L. W., Wang, R. Z., & Oliveira, R. G. (2009). A review on adsorption working pairs for refrigeration. Renewable and Sustainable Energy Reviews, 13(3), 518–534.

    Article  CAS  Google Scholar 

  • Watkins, C. B. (2002). Ethylene synthesis, mode of action, consequences and control. In M. Knee (Ed.), Fruit quality and its biological basis (pp. 180–224). Sheffield: Sheffield Academic Press.

    Google Scholar 

  • Watkins, C. B. (2006). The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnology Advances, 24(4), 389–409.

    Article  CAS  Google Scholar 

  • Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242–2250.

    Article  CAS  Google Scholar 

  • Westrich, T. A., Dahlberg, K. A., Kaviany, M., & Schwank, J. W. (2011). High-temperature photocatalytic ethylene oxidation over TiO2. The Journal of Physical Chemistry C, 115(33), 16537–16543.

    Article  CAS  Google Scholar 

  • Wills, R. B. (2015). Low ethylene technology in non-optimal storage temperatures. In R. B. H. Wills & J. Golding (Eds.), Advances in postharvest fruit and vegetable technology (pp. 167–190). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Wills, R. B., & Golding, J. B. (2015). Reduction of energy usage in postharvest horticulture through management of ethylene. Journal of the Science of Food and Agriculture, 95(7), 1379–1384.

    Article  CAS  Google Scholar 

  • Wills, R. B. H., & Kim, G. H. (1995). Effect of ethylene on postharvest life of strawberries. Postharvest Biology and Technology, 6(3), 249–255.

    Article  CAS  Google Scholar 

  • Wills, R. B. H., Ku, V. V. V., Shohet, D., & Kim, G. H. (1999). Importance of low ethylene levels to delay senescence of non-climacteric fruit and vegetables. Australian Journal of Experimental Agriculture, 39, 221–224.

    Article  Google Scholar 

  • Wills, R. B. H., Warton, M. A., & Ku, V. V. V. (2000). Ethylene levels associated with fruit and vegetables during marketing. Australian Journal of Experimental Agriculture, 40, 485–490.

    Google Scholar 

  • Wills, R. B. H., Warton, M. A., Mussa, D. M. D. N., & Chew, L. P. (2001). Ripening of climacteric fruits initiated at low ethylene levels. Animal Production Science, 41(1), 89–92.

    Article  Google Scholar 

  • Wills, R. B. H., Warton, M. A., & Kim, J. K. (2004). Effect of low levels of ethylene on sprouting of potatoes in storage. Hortscience, 39(1), 136–137.

    CAS  Google Scholar 

  • Yamazaki, S., Tanaka, S., & Tsukamoto, H. (1999). Kinetic studies of oxidation of ethylene over a TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 121(1), 55–61.

    Article  CAS  Google Scholar 

  • Yang, L., Liu, Z., Shi, J., Zhang, Y., Hu, H., & Shangguan, W. (2007). Degradation of indoor gaseous formaldehyde by hybrid VUV and TiO2/UV processes. Separation and Purification Technology, 54(2), 204–211.

    Article  CAS  Google Scholar 

  • Yao, N., & Yeung, K. L. (2011). Investigation of the performance of TiO2 photocatalytic coatings. Chemical Engineering Journal, 167(1), 13–21.

    Article  CAS  Google Scholar 

  • Yaseen, T., Ricelli, A., Turan, B., Albanese, P., & D'onghia, A. M. (2015). Ozone for post-harvest treatment of apple fruits. Phytopathologia Mediterranea, 54(1), 94–103.

    CAS  Google Scholar 

  • Ye, S. Y., Zheng, S. H., Song, X. L., & Luo, S. C. (2015). Photoelectrocatalytic decomposition of ethylene using TiO2/activated carbon fiber electrode with applied pulsed direct current square-wave potential. Applied Surface Science, 341, 61–68.

    Article  CAS  Google Scholar 

  • Young, C., Lim, T. M., Chiang, K., Scott, J., & Amal, R. (2008). Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Applied Catalysis B: Environmental, 78(1), 1–10.

    Article  CAS  Google Scholar 

  • Zagory, D. (1995). Ethylene-removing packaging. In M. L. Rooney (Ed.), Active food packaging (pp. 38–54). USA: Springer.

    Chapter  Google Scholar 

  • Zhang, P., Liu, J., & Zhang, Z. (2004). VUV photocatalytic degradation of toluene in the gas phase. Chemistry Letters, 33(10), 1242–1243.

    Article  CAS  Google Scholar 

  • Zhao, J., & Yang, X. (2003). Photocatalytic oxidation for indoor air purification: a literature review. Building and Environment, 38(5), 645–654.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Indian Council of Agricultural Research (ICAR) [ICAR-IF 2014-15, F. No. 29-1/2009-EQR/Edn (Pt. III)] is gratefully acknowledged. The Georg Forster Postdoctoral Research Fellowship (HERMES) programme from the Alexander von Humboldt Foundation (Ref. 3.4–ZAF–1160635-GFHERMES-P) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod V. Mahajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, N., Caleb, O.J., Geyer, M. et al. Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review. Food Bioprocess Technol 10, 982–1001 (2017). https://doi.org/10.1007/s11947-017-1889-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-017-1889-0

Keywords

Navigation