Skip to main content

Advertisement

Log in

Mass Transfer Kinetic and Quality Changes During High-Pressure Impregnation (HPI) of Jumbo Squid (Dosidicus gigas) Slices

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Jumbo squid is an important marine resource commercialized in Chile as well as American countries such as Perú, México, and USA. In order to find the best conditions for prevention of squid meat degradation, this study presented the simultaneous application of high hydrostatic pressure and osmotic dehydration (high-pressure impregnation (HPI)) on jumbo squid (Dosidicus gigas) slices. Diffusion coefficients for both components water and solids are improved by the high-pressure processing. The pressures used were 100, 250, and 400 MPa for a 15 g/100 mL salt concentration for time intervals of 30 s. The mathematical expressions used for mass transfer simulations of both water and salt were those corresponding to Newton, Henderson and Pabis, Page, and Weibull models, where the Weibull model presented the best fitted to the experimental data for both components. As to quality parameters studied for texture profile analysis, the treatment at 250 MPa yielded on the samples a minimum hardness, whereas springiness, cohesiveness, and chewiness at 100-, 250-, and 400-MPa treatments presented statistical differences regarding unpressurized samples. The color parameters L* (lightness) increased; however, b* (yellowish) and a* (reddish) parameters decreased when increasing pressure level. This way, samples presented a brighter aspect and a mildly cooked appearance. The results presented in this study could support the potential of high hydrostatic pressure application as a technique novel for other compound impregnation under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • A.O.A.C. (1990). Official method of analysis (15th ed). Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Abugoch, L., Guarda, A., Perez, L., & Paredes, M. (1999). Determination of proximal chemical composition of squid (Dosidicus gigas) and development of a gel product. Archivos Latinoamericanos de Nutrición, 49(2), 156–161.

    CAS  PubMed  Google Scholar 

  • Angsupanich, K., & Ledward, D. A. (1998). High pressure treatment effects on cod (Gadus morhua) muscle. Food Chemistry, 63(1), 39–50.

    Article  CAS  Google Scholar 

  • Ashie, I. N. A., & Simpson, B. K. (1996). Application of high hydrostatic pressure to control enzyme related fresh seafood texture deterioration. Food Research International, 29(5-6), 569–575.

    Article  CAS  Google Scholar 

  • Ashie, I. N. A., Simpson, B. K., & Ramaswamy, H. S. (1997). Changes in texture and microstructure of pressure-treated fish muscle tissue during chilled storage. Journal of Muscle Foods, 8(1), 13–32.

    Article  Google Scholar 

  • Azoubel, P. M., & Murr, F. E. X. (2004). Mass transfer kinetic of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61, 291–295.

    Article  Google Scholar 

  • Bourne, M. C., Moyer, J. C., & Hand, D. B. (1966). Measurement of food texture by a universal testing machine. Food Technology, 20, 522–552.

    Google Scholar 

  • Briones-Labarca, V., Perez-Won, M., Zamarca, M., Aguilera-Radic, J. M., & Tabilo-Munizaga, G. (2012). Effects of high hydrostatic pressure on microstructure, texture, color and biochemical changes of red abalone (Haliotis rufecens) during cold storage time. Innovative Food Science and Emerging Technologies, 13, 42–50.

    Article  CAS  Google Scholar 

  • Chavan, U. D., Prabhukhanolkar, A. E., & Pawar, V. D. (2010). Preparation of osmotic dehydrated ripe banana slices. Journal of Food Science and Technology, 47(4), 380–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenlo, F., Moreira, C., Fernández-Herrero, C., & Vázquez, G. (2007). Mass transfer during osmotic dehydration of chestnut using sodium chloride solutions. Journal of Food Engineering, 73, 164–173.

    Article  CAS  Google Scholar 

  • Chéret R, Chapleau, N., Delbarre-Ladrat C, Verrez-Bagnis V., and De Lamballerie-Anton M. (2005). Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.) fillets. Journal of Food Science, 70(8), 477–483.

  • Chevalier, D., Bail, A. L., & Ghoul, M. (2001). Effects of high pressure treatment (100–200 MPa) at low temperature on turbot (Scophthalmus maximus) muscle. Food Research International, 34(5), 425–429.

    Article  CAS  Google Scholar 

  • Cortés-Ruiz, J., Pacheco-Aguilar, R., Lugo-Sanchez, M., Carvallo-Ruiz, M., & Garcia-Sanchez, G. (2008). Production and functional evaluation of a protein concentrate from giant squid (Dosidicus gigas) by acid dissolution and isoelectric precipitation. Food Chemistry, 110(2), 486–492.

    Article  CAS  PubMed  Google Scholar 

  • Corzo, O., & Bracho, N. (2008). Application of Weibull distribution model to describe the vacuum pulse osmotic dehydration of sardine sheets. LWT Food Science and Technology, 41(6), 1108–1115.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). London: Oxford University Press.

    Google Scholar 

  • Cruz-Romero, M., Smiddy, M., Hill, C., Kerry, J. P., & Kelly, A. L. (2004). Effects of high-pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innovative Food Science and Emerging Technologies, 5(2), 161–169.

    Article  CAS  Google Scholar 

  • Cruz-Romero, M., Kelly, A. L., & Kerry, J. P. (2007). Effects of high-pressure and heat treatments on physical and biochemical characteristics of oysters (Crassostrea gigas). Innovative Food Science and Emerging Technologies, 8(1), 30–38.

    Article  CAS  Google Scholar 

  • Cunha, L. M., Oliveira, F. A. R., Aboim, A. P., & Frías, J. M. (2001). Stochastic approach to the modeling of water losses during osmotic dehydration and improved parameter estimation. International Journal of Food Science and Technology, 36, 253–262.

    Article  Google Scholar 

  • Fernández, F., & Vásquez, J. (1995). La Jibia gigante Dosidicus gigas (Orbigny 1835) en Chile: Análisis de una pesquera efímera. Estudios Oceanológicos, 14, 17–21.

    Google Scholar 

  • Gallart-Jornet, L., Barat, J. M., Rustad, T., Erikson, U., Escriche, I., & Fito, P. (2007). Influence of brine concentrations on Atlantic salmon fillet salting. Journal of Food Engineering, 80(1), 267–275.

    Article  Google Scholar 

  • Gou, P., Comaposada, J., & Arnau, J. (2003). NaCl content and temperature effects on moisture diffusivity in the Gluteus medius muscle of pork ham. Meat Science, 63(1), 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Ibáñez, C. M., & Ulloa, P. (2014). Desarrollo de la pesquería y comercialización del calamar Dosidicus gigas en Chile. Desarrollo de la pesquería y comercialización del calamar Dosidicus gigas (Cephalopoda, Ommastrephidae) en Chile. Amici Molluscarum, 22, 7–14.

    Google Scholar 

  • Ikkai, T., & Ooi, T. (1966). The effects of pressure on F-G transformation of actin. Biochemistry, 5(5), 1551–1560.

    Article  CAS  PubMed  Google Scholar 

  • Kruk, Z. A., Yun, H., Rutley, D. L., Lee, E. J., Kim, Y. J., & Jo, C. (2011). The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control, 22(1), 6–12.

    Article  Google Scholar 

  • Lamballerie-Anton, M. D., Taylor, R. G., & Culioli, J. (2002). High pressure processing of meat. In J. Kerry, J. Kerry, & D. Ledward (Eds.), Meat processing: improving quality (pp. 313–324). Cambridge: Woodhead Publishing Limited.

    Chapter  Google Scholar 

  • Landl, A., Abadias, M., Sárraga, C., Viñas, I., & Picouet, A. P. (2010). Effect of high pressure processing on the quality of acidified Granny Smith apple purée product. Innovative Food Science and Emerging Technologies, 11, 557–564.

    Article  CAS  Google Scholar 

  • Lemus-Mondaca, R., Miranda, M., Ándres, A., Briones, V., Villalobos, R., & Vega-Gálvez, A. (2009). Effect of osmotic pretreatment on hot-air drying kinetics and quality of Chilean papaya (Carica pubescens). Drying Technology, 27(10), 1105–1115.

    Article  CAS  Google Scholar 

  • Ma, H. J., & Ledward, D. A. (2004). High pressure/thermal treatment effects on the texture of beef muscle. Meat Science, 68(3), 347–355.

    Article  PubMed  Google Scholar 

  • Macfarlane, J. J., & McKenzie, I. J. (1976). Pressure induced solubilization of myofibrillar proteins. Journal of Food Science, 41(6), 1442–1446.

    Article  CAS  Google Scholar 

  • Nuñez-Mancilla, Y., Perez-Won, M., Vega-Gálvez, A., Arias, V., Tabilo-Munizaga, G., & Briones-Labarca, V. (2011). Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innovative Food Science and Emerging Technologies, 12(3), 338–343.

    Article  Google Scholar 

  • Pérez-Won, M., Lemus-Mondaca, R., Tabilo-Munizaga, G., Pizarro, S., Noma, S., Igura, N., & Shimoda, M. (2016). Modelling of red abalone (Haliotis rufescens) slices drying process: Effect of osmotic dehydration under high pressure as a pretreatment. Innovative Food Science and Emerging Technologies, 34, 127–134.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., and Niranjan, K. (1998). Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. Journal of Food Science, 63, 3–5, 508, 511.

  • Rastogi, N. K., Raghavarao, K. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Review in Food Science and Nutrition, 47(1), 69–112.

    Article  CAS  Google Scholar 

  • Rocha, F., & Vega, M. (2003). Overview of cephalopod fisheries in Chilean waters. Fisheries Research, 60(1), 151–159.

    Article  Google Scholar 

  • Sopanangkul, A., Ledward, D. A., & Niranjan, K. (2002). Mass transfer during sucrose infusion into potatoes under high pressure. Journal of Food Science, 67(6), 2217–2220.

    Article  CAS  Google Scholar 

  • STSC, Inc. (1991). Statgraphics statistical graphics system, Version 51. Rockville, Md: STSC, Inc.

  • Uribe, E., Miranda, M., Vega-Gálvez, A., Quispe, I., Clavería, R., & Di Scala, K. (2011). Mass transfer modelling during osmotic dehydration of jumbo squid (Dosidicus gigas): influence of temperature on diffusion coefficients and kinetic parameters. Food Bioprocess Technology, 4(2), 320–326.

    Article  Google Scholar 

  • Valencia-Pérez, A., García-Morales, M., Cárdenas-López, J., Herrera-Urbina, J., Rouzaud-Sández, O., & Ezquerra-Brauer, J. (2008). Effect of thermal process on connective tissue from jumbo squid (Dosidicus gigas) mantle. Food Chemistry, 107(4), 1371–1378.

    Article  CAS  Google Scholar 

  • Vega-Gálvez, A., Miranda, M., Clavería, R., Quispe, I., Vergara, J., Uribe, E., Paez, H., & Di Scala, K. (2011). Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas). LWT-Food Science and Technology, 44(1), 16–23.

    Article  CAS  Google Scholar 

  • Villacís, M. F., Rastogi, N. K., & Balasubramaniam, V. M. (2008). Effect of high pressure on moisture and NaCl diffusion into turkey breast. LWT-Food and Science Technology, 41(5), 836–844.

    Article  CAS  Google Scholar 

  • Yagiz, Y., Kristinsson, H. G., Balaban, M. O., & Marshall, M. R. (2007). Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). Food Chemistry and Toxicology, 72(9), 509–515.

    Google Scholar 

  • Yoshioka, K., & Yamamoto, T. (1998). Changes of ultrastructure and the physical properties of carp muscle by high pressurization. Fisheries Science, 64(1), 89–94.

    Article  CAS  Google Scholar 

  • Zhang, Y., Jiao, S., Lian, Z., Deng, Y., & Zhao, Y. (2015). Effect of single-and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (Todarodes pacificus). Journal of Food Science, 80(5), E1012–E1020.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by FONDECYT Regular No. 1140067 Project and DIULS Tesis Postgrado PT15331 project for publication of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Lemus-Mondaca or Carlos Zambra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemus-Mondaca, R., Zambra, C., Marín, F. et al. Mass Transfer Kinetic and Quality Changes During High-Pressure Impregnation (HPI) of Jumbo Squid (Dosidicus gigas) Slices. Food Bioprocess Technol 11, 1516–1526 (2018). https://doi.org/10.1007/s11947-018-2122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2122-5

Keywords

Navigation