Skip to main content
Log in

Physical Characteristics, Release Properties, and Antioxidant and Antimicrobial Activities of Whey Protein Isolate Films Incorporated with Thyme (Thymus vulgaris L.) Extract-Loaded Nanoliposomes

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of the current research was to fabricate, characterize, and compare physical, mechanical, antimicrobial, antioxidant, and release properties of whey protein isolate (WPI)-based films containing free or nanoencapsulated thyme (Thymus vulgaris) extract (TE) at concentrations of 0, 5, 10, and 15% w/w of WPI. Nanoliposomes with an average size of 350 nm were prepared using thin-film hydration and sonication method. The data obtained from FTIR reflected the occurrence of some new interactions between WPI and nanoliposomes. XRD results approved the negative effect of free TE on the crystallinity of WPI. Besides, SEM images showed that free TE caused the cracks and holes in the WPI matrix to increase. However, the encapsulated TE did not show these negative effects. The nanoliposome incorporation improved the mechanical stiffness, leading to a decrease in the water vapor permeability (WVP). The possible antimicrobial activity of the films containing TE-loaded nanoliposomes against Staphylococcus aureus and Escherichia coli was decreased in comparison to the free TE-incorporated films, probably due to the inhibition effect of the encapsulation preventing the release of TE from the matrix. In addition, the antioxidant potential of the films containing TE-loaded nanoliposomes was lower than that of free TE-incorporated films. Release studies indicated that the migration of TE in ethanol 95% simulant decreased significantly by the nanoencapsulation of TE. However, the release rate increased by an increase in temperature in both types of active films. Therefore, this work showed that there is a potential for the production of antioxidant and antimicrobial controlled-release nanoactive WPI-TE films for use in food packaging and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo-Fani, A., Salvia-Trujillo, L., Rojas-Graü, M. A., & Martín-Belloso, O. (2015). Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocolloids, 47, 168–177.

    Article  CAS  Google Scholar 

  • Alizadeh, A. (2013). Essential oil constituents, phenolic content and antioxidant activity in Iranian and British Thymus vulgaris L. International Journal of Agriculture and Crop Sciences, 6, 213–218.

    CAS  Google Scholar 

  • Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A. A., & Khosrowshahi, A. A. (2014). Development of a novel controlled-release nanocomposite based on poly (lactic acid) to increase the oxidative stability of soybean oil. Food Additives & Contaminants: Part A, 31(9), 1586–1597.

    Article  CAS  Google Scholar 

  • Almasi, H., Zandi, M., Beigzadeh, S., Haghju, S., & Mehrnow, N. (2016). Chitosan films incorporated with nettle (Urtica Dioica L.) extract-loaded nanoliposomes: II. Antioxidant activity and release properties. Journal of Microencapsulation, 33(5), 449–459.

    Article  CAS  Google Scholar 

  • ASTM (2005). Standard test methods for water vapor transmission of material. E96–05 annual book of ASTM.

  • ASTM (2010). Standard test methods for tensile properties of thin plastic sheeting. D882–10 annual book of ASTM.

  • Bahram, S., Rezaei, M., Soltani, M., Kamali, A., Ojagh, S. M., & Abdollahi, M. (2014). Whey protein concentrate edible film activated with cinnamon essential oil. Journal of Food Processing and Preservation, 38(3), 1251–1258.

    Article  CAS  Google Scholar 

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4, 849–875.

    Article  CAS  Google Scholar 

  • Decker, E. A., Elias, R. J., Mcclements, D. J. (2010). Oxidation in foods and beverages and antioxidant applications: management in different industry sectors. Woodhead Publishing Limited, 125–134.

  • Del Toro-Sánchez, C., Ayala-Zavala, J., Machi, L., Santacruz, H., Villegas-Ochoa, M., Alvarez-Parrilla, E., & González-Aguilar, G. (2010). Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 67(3-4), 431–441.

    Article  CAS  Google Scholar 

  • Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: possibilities and limitations. International Dairy Journal, 14(4), 273–285.

    Article  Google Scholar 

  • Díaz-Maroto, M. C., Díaz-Maroto Hidalgo, I. J., Sánchez-Palomo, E., & Pérez-Coello, M. S. (2005). Volatile components and key odorants of fennel (Foeniculum vulgare mill.) and thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation−extraction and supercritical fluid extraction. Journal of Agricultural and Food Chemistry, 53(13), 5385–5389.

    Article  CAS  PubMed  Google Scholar 

  • Donsi, F., Annunziata, M., Sessa, M., & Ferrari, G. (2011). Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Science and Technology, 44(9), 1908–1914.

    Article  CAS  Google Scholar 

  • Fathi, M., Mozafari, M. R., & Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology, 23(1), 13–27.

    Article  CAS  Google Scholar 

  • Fernández-Pan, I., Royo, M., & Ignacio Maté, J. (2012). Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. Journal of Food Science, 77, 41–56.

    Article  CAS  Google Scholar 

  • Ghadetaj, A., Almasi, H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packaging and Shelf Life, 16, 31–40.

    Article  Google Scholar 

  • Ghanbarzadeh, B., & Oromiehi, A. (2008). Biodegradable biocomposite films based on whey protein and zein: barrier, mechanical properties and AFM analysis. International Journal of Biological Macromolecules, 43(2), 209–2015.

    Article  CAS  PubMed  Google Scholar 

  • Gorjikhah, F., Azizi Jalalian, F., Salehi, R., Panahi, Y., Hasanzadeh, A., Alizadeh, E., Akbarzadeh, A., & Davaran, S. (2017). Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line. Artificial Cells, Nanomedicine, and Biotechnology, 45(3), 432–440.

    Article  CAS  PubMed  Google Scholar 

  • Grigore, A., Paraschiv, I., Colceru-Mihul, S., Bubueanu, C., Draghici, E., & Ichim, M. (2010). Chemical composition and antioxidant activity of Thymus vulgaris L. volatile oil obtained by two different methods. Romanian Biotechnological Letters, 15, 5436–5443.

    CAS  Google Scholar 

  • Güder, A., & Korkmaz, H. (2012). Evaluation of in-vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr. and their mixture. Iranian Journal of Pharmaceutical Research: IJPR, 11(3), 913–923.

    PubMed  Google Scholar 

  • Haghju, S., Beigzadeh, S., Almasi, H., & Hamishehkar, H. (2016). Chitosan films incorporated with nettle (Urtica dioica L.) extract-loaded nanoliposomes: I. Physicochemical characterisation and antimicrobial properties. Journal of Microencapsulation, 33(5), 438–448.

    Article  CAS  Google Scholar 

  • Hamilton, R. J. (1998). Lipid analysis in oils and fats. Springer science & business media.

  • Hassannia-Kolaee, M., Khodaiyan, F., Pourahmad, R., & Shahabi-Ghahfarrokhi, I. (2016). Development of ecofriendly bionanocomposite: whey protein isolate/pullulan films with nano-SiO 2. International Journal of Biological Macromolecules, 86, 139–144.

    Article  CAS  PubMed  Google Scholar 

  • Imelouane, B., Amhamdi, H., Wathelet, J. P., Ankit, M., Khedid, K., & El Bachiri, A. (2009). Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from eastern Morocco. International Journal of Agriculture and Biology, 11, 205–208.

    CAS  Google Scholar 

  • Imran, M., Revol-Junelles, A. M., René, N., Jamshidian, M., Akhtar, M. J., Arab-Tehrany, E., Jacquot, M., & Desobry, S. (2012). Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids, 29(2), 407–419.

    Article  CAS  Google Scholar 

  • Jamshidian, M., Tehrany, E. A., & Desobry, S. (2012). Release of synthetic phenolic antioxidants from extruded poly lactic acid (PLA) film. Food Control, 28(2), 445–455.

    Article  CAS  Google Scholar 

  • Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159–169.

    Article  CAS  Google Scholar 

  • Kadam, D. M., Thunga, M., Wang, S., Kessler, M. R., Grewell, D., Lamsal, B., & Yu, C. (2013). Preparation and characterization of whey protein isolate films reinforced with porous silica coated titania nanoparticles. Journal of Food Engineering, 117(1), 133–140.

    Article  CAS  Google Scholar 

  • Kavas, G., Kavas, N., & Saygili, D. (2015). The effects of thyme and clove essential oil fortified edible films on the physical, chemical and microbiological characteristics of kashar cheese. Journal of Food Quality, 38(6), 405–412.

    Article  CAS  Google Scholar 

  • Khwaldia, K., Perez, C., Banon, S., Desobry, S., & Hardy, J. (2004). Milk proteins for edible films and coatings. Critical Reviews in Food Science and Nutrition, 44(4), 239–251.

    Article  CAS  PubMed  Google Scholar 

  • Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2011). Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. Journal of Food Science, 76, 90–102.

    Article  CAS  Google Scholar 

  • Lee, S. J., Umano, K., Shibamoto, T., & Lee, K. G. (2005). Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chemistry, 91(1), 131–137.

    Article  CAS  Google Scholar 

  • Li, Y., Jiang, Y., Liu, F., Ren, F., Zhao, G., & Leng, X. (2011). Fabrication and charachterization of TiO2/whey protein isolate nanocomposite film. Food Hydrocolloids, 25, 1098–1104.

  • Ma, Q., Zhang, Y., Critzer, F., Davidson, P. M., Zivanovic, S., & Zhong, Q. (2016). Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloids, 52, 533–542.

    Article  CAS  Google Scholar 

  • Moradi, M., Tajik, H., Rohani, S. M. R., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 477–484.

    Article  CAS  Google Scholar 

  • Mozafari, M. (2010). Nanoliposomes: Preparation and Analysis. Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers, 605, 29–50.

    CAS  Google Scholar 

  • Noori, S., Zeynali, F., & Almasi, H. (2018). Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control, 84, 312–320.

    Article  CAS  Google Scholar 

  • Ramos, Ó. L., Silva, S. I., Soares, J. C., Fernandes, J. C., Poças, M. F., Pintado, M. E., & Malcata, F. X. (2012). Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Research International, 45(1), 351–361.

    Article  CAS  Google Scholar 

  • Ramos, Ó. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Pocas, M. F., Pintado, M. E., & Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110–122.

    Article  CAS  Google Scholar 

  • Rasooli, I., & Abyaneh, M. R. (2004). Inhibitory effects of thyme oils on growth and aflatoxin production by aspergillus parasiticus. Food Control, 15(6), 479–483.

    Article  CAS  Google Scholar 

  • Roby, M. H. H., Sarhan, M. A., Selim, K. A. H., & Khalel, K. I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827–831.

    Article  CAS  Google Scholar 

  • Rota, M. C., Herrera, A., Martínez, R. M., Sotomayor, J. A., & Jordán, M. J. (2008). Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control, 19(7), 681–687.

    Article  CAS  Google Scholar 

  • Salvia-Trujillo, L., Rojas-Graü, M. A., Soliva-Fortuny, R., & Martín-Belloso, O. (2015). Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biology and Technology, 105, 8–16.

    Article  CAS  Google Scholar 

  • Shahmohammadi Jebel, F., & Almasi, H. (2016). Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers, 149, 8–19.

    Article  CAS  PubMed  Google Scholar 

  • Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: a review. Journal of Liposome Research, 23(4), 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770–775.

    Article  CAS  Google Scholar 

  • Tokur, B. K., Sert, F., Aksun, E. T., & Ozogul, F. (2016). The effect of whey protein isolate coating enriched with thyme essential oils on trout quality at refrigerated storage (4±2°C). Journal of Aquatic Food Product Technology, 25(4), 585–596.

    Article  CAS  Google Scholar 

  • Veraart, R. (2010). Compliance testing, declaration of compliance, and supporting documentation in the EU. In R. Rijk, & R. Veraart (eds.) Global Legislation for Food Packaging Materials. 199–201. Germany: Wiley-VCH Publishing

  • Wu, J., Liu, H., Ge, S., Wang, S., Qin, Z., Chen, L., Zheng, Q., Liu, Q., & Zhang, Q. (2015). The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocolloids, 43, 427–435.

    Article  CAS  Google Scholar 

  • Yen, M. T., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74(4), 840–844.

    Article  CAS  Google Scholar 

  • Zhang, H., Tehrany, E. A., Kahn, C., Ponçot, M., Linder, M., & Cleymand, F. (2012). Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydrate Polymers, 88(2), 618–627.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Almasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, S.GG., Almasi, H. Physical Characteristics, Release Properties, and Antioxidant and Antimicrobial Activities of Whey Protein Isolate Films Incorporated with Thyme (Thymus vulgaris L.) Extract-Loaded Nanoliposomes. Food Bioprocess Technol 11, 1552–1565 (2018). https://doi.org/10.1007/s11947-018-2121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-018-2121-6

Keywords

Navigation