Skip to main content
Log in

Purification and Identification of Antifreeze Protein From Cold-Acclimated Oat (Avena sativa L.) and the Cryoprotective Activities in Ice Cream

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Antifreeze proteins (AFPs) were extracted from cold-acclimated oat by vacuum infiltration–centrifugation. Ammonium precipitation, ion exchange, and size-exclusion chromatography were used successively to purify the oat AFPs (AsAFPs), and the proteins were identified using matrix-assisted laser desorption/ionization time of flight tandem mass spectrometry. The results showed that an ammonium-sulfate saturation of 50–100 % was optimal for supernatant precipitation. After purification, AsAFP was found to have achieved an electrophoretic purity and its thermal-hysteresis activity was measured at 1.24 °C (15 mg ml−1). The mass fingerprinting and sequencing results indicated the homology of AsAFP and endochitinase. Recrystallization and melting resistance of ice cream were improved by AsAFP (0.1 %). Moreover, the addition of AsAFP (0.1 %) in ice cream increased the glass transition temperature (Tg) from −29.14 to −27.74 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFPs:

Antifreeze proteins

THA:

Thermal-hysteresis activity

DSC:

Differential scanning calorimeter

PBS:

Phosphate-buffered saline solution

DEAE:

Diethylaminoethyl cellulose

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

RIA:

Recrystallization inhibition activity

References

  • Ablett, S., Clarke, C. J., Izzard, M. J., & Martin, D. R. (2002). Relationship between ice recrystallisation rates and the glass transition in frozen sugar solutions. Journal of the Science of Food and Agriculture, 82(15), 1855–1859.

    Article  CAS  Google Scholar 

  • Adapa, S., Schmidt, K. A., Jeon, I. J., Herald, T. J., & Flores, R. A. (2000). Mechanisms of ice crystallization and recrystallization in ice cream: a review. Food Reviews International, 16(3), 259–271.

    Article  CAS  Google Scholar 

  • Altschul, A. M., Yatsu, L. Y., Orya, R. L., & Engleman, E. M. (1966). Seed proteins. Annual Review of Plant Physiology, 17(1), 113–136.

    Article  CAS  Google Scholar 

  • Amornwittawat, N., Wang, S., Duman, J. G., & Wen, X. (2008). Polycarboxylates enhance beetle antifreeze protein activity. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1784(12), 1942–1948.

    Article  CAS  Google Scholar 

  • Antikainen, M., & Griffith, M. (1997). Antifreeze protein accumulation in freezing-tolerant cereals. Physiologia Plantarum, 99(3), 423–432.

    Article  CAS  Google Scholar 

  • Atici, O., & Nalbantoglu, B. (2003). Antifreeze proteins in higher plants. Phytochemistry, 64(7), 1187–1196.

    Article  CAS  Google Scholar 

  • Cao, H., Zhao, Y., Zhu, Y. B., Xu, F., Yu, J. S., & Yuan, M. (2016). Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin. Food Chemistry, 194, 1245–1253.

    Article  CAS  Google Scholar 

  • Ding, X. L., Zhang, H., Liu, W. H., Wang, L., Qian, H. F., & Qi, X. G. (2014). Extraction of carrot (Daucus carota) antifreeze proteins and evaluation of their effects on frozen white salted noodles. Food and Bioprocess Technology, 7(3), 842–852.

    Article  CAS  Google Scholar 

  • Ding, X. L., Zhang, H., Chen, H. Y., Wang, L., Qian, H. F., & Qi, X. G. (2015a). Extraction, purification and identification of antifreeze proteins from cold acclimated malting barley (Hordeum vulgare L.). Food Chemistry, 175, 74–81.

    Article  CAS  Google Scholar 

  • Ding, X. L., Zhang, H., Wang, L., Qian, H. F., Qi, X. G., & Xiao, J. H. (2015b). Effect of barley antifreeze protein on thermal properties and water state of dough during freezing and freeze-thaw cycles. Food Hydrocolloids, 47, 32–40.

    Article  CAS  Google Scholar 

  • Duman, J. G., & Olsen, T. M. (1993). Thermal hysteresis protein-activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology, 30(3), 322–328.

    Article  Google Scholar 

  • Duman, J. G., & Serianni, A. S. (2002). The role of endogenous antifreeze protein enhancers in the hemolymph thermal hysteresis activity of the beetle Dendroides canadensis. Journal of Insect Physiology, 48(1), 103–111.

    Article  CAS  Google Scholar 

  • Feeney, R. E., & Yeh, Y. (1998). Antifreeze proteins: current status and possible food uses. Trends in Food Science & Technology, 9(3), 102–106.

    Article  CAS  Google Scholar 

  • Fei, Y. B., Cao, P. X., Gao, S. Q., Wang, B., Wei, L. B., Zhao, J., Chen, G., & Wang, B. H. (2008). Purification and structure analysis of antifreeze proteins from ammopiptanthus mongolicus. Preparative Biochemistry & Biotechnology, 38(2), 179–190.

    Article  Google Scholar 

  • Gaukel, V., Leiter, A., & Spiess, W. E. L. (2014). Synergism of different fish antifreeze proteins and hydrocolloids on recrystallization inhibition of ice in sucrose solutions. Journal of Food Engineering, 141, 44–50.

    Article  CAS  Google Scholar 

  • Goff, H. D., Caldwell, K. B., Stanley, D. W., & Maurice, T. J. (1993). The influence of polysaccharides on the glass-transition in frozen sucrose solutions and ice-cream. Journal of Dairy Science, 76(5), 1268–1277.

    Article  CAS  Google Scholar 

  • Graham, L. A., Liou, Y.-C., Walker, V. K., & Davies, P. L. (1997). Hyperactive antifreeze protein from beetles. Nature, 388(6644), 727–728.

    Article  CAS  Google Scholar 

  • Griffith, M., & Ewart, K. V. (1995). Antifreeze proteins and their potential use in frozen foods. Biotechnology Advances, 13(3), 375–402.

    Article  CAS  Google Scholar 

  • Hagiwara, T., & Hartel, R. W. (1996). Effect of sweetener, stabilizer, and storage temperature on ice recrystallization in ice cream. Journal of Dairy Science, 79(5), 735–744.

    Article  CAS  Google Scholar 

  • Hansen, T. N., & Baust, J. G. (1988). Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm, Tenebrio molitor. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 957(2), 217–221.

    Article  CAS  Google Scholar 

  • Higgins, T. J. V. (1984). Synthesis and regulation of major proteins in seeds. Annual Review of Plant Physiology, 35(1), 191–221.

    Article  CAS  Google Scholar 

  • Hon, W. C., Griffith, M., Chong, P. L., & Yang, D. S. C. (1994). Extraction and isolation of antifreeze proteins from winter rye (Secale-Cereale L) leaves. Plant Physiology, 104(3), 971–980.

    CAS  Google Scholar 

  • Knight, C. A., Cheng, C. C., & Devries, A. L. (1991). Adsorption of alpha-helical antifreeze peptides on specific ice crystal-surface planes. Biophysical Journal, 59(2), 409–418.

    Article  CAS  Google Scholar 

  • Kristiansen, E., & Zachariassen, K. E. (2005). The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology, 51(3), 262–280.

    Article  CAS  Google Scholar 

  • Kuiper, M. J., Davies, P. L., & Walker, V. K. (2001). A theoretical model of a plant antifreeze protein from Lolium perenne. Biophysical Journal, 81(6), 3560–3565.

    Article  CAS  Google Scholar 

  • Li, Y. P., Gong, H., & Park, H. Y. (2000). Purification and partial characterization of thermal hysteresis proteins from overwintering larvae of pine needle gall midge, Thecodiplosis japonensis (Diptera : Cecidomiidae). Cryo-Letters, 21(2), 117–124.

    CAS  Google Scholar 

  • Muse, M. R., & Hartel, R. W. (2004). Ice cream structural elements that affect melting rate and hardness. Journal of Dairy Science, 87(1), 1–10.

    Article  CAS  Google Scholar 

  • Pertaya, N., Marshall, C. B., Celik, Y., Davies, P. L., & Braslavsky, I. (2008). Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity. Biophysical Journal, 95(1), 333–341.

    Article  CAS  Google Scholar 

  • Regand, A., & Goff, H. D. (2005). Freezing and ice recrystallization properties of sucrose solutions containing ice structuring proteins from cold-acclimated winter wheat grass extract. Journal of Food Science, 70(9), E552–E556.

    Article  CAS  Google Scholar 

  • Shewry, P. R., Napier, J. A., & Tatham, A. S. (1995). Seed storage proteins—structures and biosynthesis. Plant Cell, 7(7), 945–956.

    Article  CAS  Google Scholar 

  • Sidebottom, C., Buckley, S., Pudney, P., Twigg, S., Jarman, C., Holt, C., Telford, J., McArthur, A., Worrall, D., Hubbard, R., & Lillford, P. (2000). Phytochemistry—heat-stable antifreeze protein from grass. Nature, 406(6793), 256–256.

    Article  CAS  Google Scholar 

  • Soukoulis, C., Lebesi, D., & Tzia, C. (2009). Enrichment of ice cream with dietary fibre: effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chemistry, 115(2), 665–671.

    Article  CAS  Google Scholar 

  • Urrutia, M. E., Duman, J. G., & Knight, C. A. (1992). Plant thermal hysteresis proteins. Biochimica Et Biophysica Acta, 1121(1–2), 199–206.

    Article  CAS  Google Scholar 

  • Wang, L., & Duman, J. G. (2006). A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins. Biochemistry, 45(4), 1278–1284.

    Article  CAS  Google Scholar 

  • Wang, S., Agyare, K., & Damodaran, S. (2009). Optimisation of hydrolysis conditions and fractionation of peptide cryoprotectants from gelatin hydrolysate. Food Chemistry, 115(2), 620–630.

    Article  CAS  Google Scholar 

  • Wang, X., Bian, Y. Y., Cheng, K., Zou, H. F., Sun, S. S. M., & He, J. X. (2012). A comprehensive differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses. Journal of Proteome Research, 11(4), 2301–2315.

    Article  CAS  Google Scholar 

  • Wilson, P. W. (1993). Explaining thermal hysteresis by the Kelvin effect. Cryo-Letters, 14(1), 31–36.

    Google Scholar 

  • Worrall, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., Telford, J., Holt, C., & Bowles, D. (1998). A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science, 282(5386), 115–117.

    Article  CAS  Google Scholar 

  • Wu, J. H., Rong, Y. Z., Wang, Z. W., Zhou, Y. F., Wang, S. Y., & Zhao, B. (2015). Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction. Food Chemistry, 174, 621–629.

    Article  CAS  Google Scholar 

  • Yu, X. M., & Griffith, M. (2001). Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid. Physiologia Plantarum, 112(1), 78–86.

    Article  CAS  Google Scholar 

  • Zachariassen, K. E., & Husby, J. A. (1982). Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature, 298(5877), 865–867.

    Article  Google Scholar 

  • Zachariassen, K. E., DeVries, A. L., Hunt, B., & Kristiansen, E. (2002). Effect of ice fraction and dilution factor on the antifreeze activity in the hemolymph of the cerambycid beetle Rhagium inquisitor. Cryobiology, 44(2), 132–141.

    Article  CAS  Google Scholar 

  • Zhang, D. Q., Liu, B., Feng, D. R., He, Y. M., & Wang, J. F. (2004). Expression, purification, and antifreeze activity of carrot antifreeze protein and its mutants. Protein Expression and Purification, 35(2), 257–263.

    Article  CAS  Google Scholar 

  • Zhang, C., Zhang, H., Wang, L., Zhang, J. H., & Yao, H. Y. (2007). Purification of antifreeze protein from wheat bran (Triticum aestivum L.) based on its hydrophilicity and ice-binding capacity. Journal of Agricultural and Food Chemistry, 55(19), 7654–7658.

    Article  CAS  Google Scholar 

  • Zhang C, Zhao, X., Ma, Y., Zhang, H., & Yao, H. Y. (2008) Determination of thermal hysteresis activity of antifreeze protein by differential scanning calorimetry. Acta Biophysica Sinica. 24(6).

  • Zhang, C., Ma, Y., Zhao, X. Y., Zhang, H., & Yao, H. Y. (2009). Determination of primary structure of winter-wheat-bran antifreeze protein. Chinese Journal of Analytical Chemistry, 37(5), 659–664.

    Article  Google Scholar 

  • Zhang, Y. J., Zhang, H., Wang, L., Qian, H. F., & Qi, X. G. (2015). Extraction of oat (Avena sativa L.) antifreeze proteins and evaluation of their effects on frozen dough and steamed bread. Food and Bioprocess Technology, 8(10), 2066–2075.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31171637) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, H., Ding, X. et al. Purification and Identification of Antifreeze Protein From Cold-Acclimated Oat (Avena sativa L.) and the Cryoprotective Activities in Ice Cream. Food Bioprocess Technol 9, 1746–1755 (2016). https://doi.org/10.1007/s11947-016-1750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1750-x

Keywords

Navigation