Skip to main content
Log in

Temperature-Dependent Dielectric Properties of Raw Cow’s and Goat’s Milk from 10 to 4,500 MHz Relevant to Radio-frequency and Microwave Pasteurization Process

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

To offer useful information for milk pasteurization with radio-frequency or microwave heating, the dielectric properties (dielectric constant and dielectric loss factor) of raw cow’s milk and goat’s milk were determined over the frequency range of 10–4,500 MHz and temperature range of 25–75 °C by a vector network analyzer and an open-ended coaxial-line probe. The mathematical models describing the relationship between permittivities and temperature were built, and the power penetration depth was investigated. The results showed that both for cow’s milk and goat’s milk, the dielectric constants decreased with an increase of frequency, and the dielectric loss factor decreased with increasing frequency below 1,000 MHz and increased after that. The dielectric constants decreased with increasing temperature at a given frequency. For raw cow’s milk, the dielectric loss factor almost increased with temperature below about 800 MHz, and decreased with temperature above that. For raw goat’s milk, the loss factor decreased with temperature in whole investigated frequency range. Quadratic equations could be used to describe the relationship between permittivities and temperature at interested frequencies with coefficient of determination higher than 0.96. The penetration depth decreased with increasing frequency. Contrasted to frequency, temperature had less effect on penetration depth. Microwave heating at 915 MHz has great potential for raw cow’s milk pasteurization, while radio-frequency heating at 27.12 and 40.68 MHz and microwave heating at 915 MHz can be used for goat’s milk pasteurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bohigas, X., Amig, R., & Tejada, J. (2008). Characterisation of sugar content in yoghurt by means of microwave spectroscopy. Food Research International, 41(1), 104–109.

    Article  CAS  Google Scholar 

  • Boxler, C., Augustin, W., & Scholl, S. (2013). Fouling of milk components on DLC coated surfaces at pasteurization and UHT temperatures. Food and Bioproducts Processing, 91(4), 336–347.

    Article  CAS  Google Scholar 

  • Campañone, L. A., Paola, C. A., & Mascheroni, R. H. (2012). Modeling and simulation of microwave heating of foods under different process schedules. Food and Bioprocess Technology, 5, 738–749.

    Article  Google Scholar 

  • Clare, D. A., Bang, W. S., Cartwright, G., Drake, M. A., Coronel, P., & Simunovic, J. (2005). Comparison of sensory, microbiological, and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage. Journal of Dairy Science, 88(12), 4172–4182.

    Article  CAS  Google Scholar 

  • Clerjon, S., Daudin, J.-D., & Damez, J.-L. (2003). Water activity and dielectric properties of gels in the frequency range 200 MHz–6 GHz. Food Chemistry, 82(1), 87–97.

    Article  CAS  Google Scholar 

  • Coronel, P., Simunovic, J., & Sandeep, K. P. (2003). Temperature profiles within milk after heating in a continuous-flow tubular microwave system operating at 915 MHz. Journal of Food Science, 68(6), 1976–1981.

    Article  CAS  Google Scholar 

  • Guo, W., Nelson, S. O., Trabelsi, S., & Kays, S. J. (2008). Radio frequency (RF) dielectric properties of honeydew melon and watermelon juice and correlations with sugar content. Transactions of the Chinese Society of Agricultural Engineering, 24(5), 289–292 (in Chinese with English abstract).

    Google Scholar 

  • Guo, W., Zhu, X., Liu, H., Yue, R., & Wang, S. (2010). Effects of milk concentration and freshness on microwave dielectric properties. Journal of Food Engineering, 99(2), 344–350.

    Article  Google Scholar 

  • Guo, W., Zhu, X., Nelson, S. O., Yue, R., Liu, H., & Liu, Y. (2011). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT - Food Science and Technology, 44(1), 224–230.

    Article  CAS  Google Scholar 

  • Guo, W., Zhu, X., & Nelson, S. O. (2013). Permittivities of watermelon pulp and juice and correlation with quality indicators. International Journal of Food Properties, 16, 475–484.

    Article  CAS  Google Scholar 

  • Kudra, T., Van de Voort, F. R., Raghavan, G. S. V., & Ramaswamy, H. S. (1991). Heating characteristics of milk constituents in a microwave pasteurization system. Journal of Food Science, 56(4), 931–934.

    Google Scholar 

  • Kudra, T., Raghavan, V., Akyel, C., Bosisio, R., & Van de Voort, F. (1992). Electromagnetic properties of milk and its constituents at 2.45 GHz. Journal of Microwave Power and Electromagnetic Energy, 27(4), 199–204.

    Google Scholar 

  • Meunier-Goddik, L., & Sandra, S. (2011). Liquid milk products: pasteurized milk. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., Vol. 3, pp. 274–279). London: Elsevier.

    Chapter  Google Scholar 

  • Mudgett, R. E. (1986). Electrical properties of foods. In M. A. Rao & S. S. H. Rizvi (Eds.), Engineering properties of foods (pp. 329–390). New York: Marcel Dekker.

    Google Scholar 

  • Mudgett, R. E., Smith, A. C., Wang, D. I. C., & Goldblith, S. A. (1974). Prediction of dielectric properties in nonfat milk at frequencies and temperatures of interest in microwave processing. Journal of Food Science, 39(1), 52–54.

    Article  CAS  Google Scholar 

  • Nelson, S. O. (2005). Dielectric spectroscopy of fresh fruit and vegetable tissues from 10 to 1800 MHz. Journal of Microwave Power and Electromagnetic Energy, 40(1), 31–47.

    Google Scholar 

  • Nelson, S. O., & Datta, A. K. (2001). Dielectric properties of food materials and electric field interactions. In A. K. Datta & R. C. Anantheswaran (Eds.), Handbook of microwave technology for food applications (pp. 70–75). New York: Marcel Dekker.

    Google Scholar 

  • Nunes, A. C., Bohigas, X., & Tejada, J. (2006). Dielectric study of milk for frequencies between 1 and 20 GHz. Journal of Food Engineering, 76(2), 250–255.

    Article  Google Scholar 

  • Oliveira, M. E. C., & Franca, A. S. (2002). Microwave heating of foodstuffs. Journal of Food Engineering, 53(4), 347–359.

    Article  Google Scholar 

  • Rossitto, P. V., Cullor, J. S., Crook, J., Parko, J., Sechi, P., & Cenci-Goga, B. T. (2012). Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow's milk. Journal of Food Protection, 75(12), 2197–2207.

    Article  CAS  Google Scholar 

  • Ryynänen, S. (1995). The electromagnetic properties of food materials: a review of the basic principles. Journal of Food Engineering, 26(4), 409–429.

    Article  Google Scholar 

  • Salazar-González, C., San Martín-González, M. F., López-Malo, A., & Sosa-Morales, M. E. (2012). Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology, 5(1), 31–46.

    Article  Google Scholar 

  • Schiffmann, R. F. (1995). Microwave and dielectric drying. In A. S. Majumdar (Ed.), Handbook of industrial drying. New York: Marcel Dekker.

    Google Scholar 

  • Tanaka, F., Morita, K., Mallikarjunan, P., Hung, Y. C., & Ezeike, G. O. I. (2005). Analysis of dielectric properties of soy sauce. Journal of Food Engineering, 71(1), 92–97.

    Article  Google Scholar 

  • Tang, J., Feng, H., & Lau, M. (2002). Microwave heating in food processing. In X. Young, J. Tang, C. Zhang, & W. Xin (Eds.), Advances in agricultural engineering. New York: Scientific.

    Google Scholar 

  • Villamiel, M., López-Fandiño, R., Corzo, N., Martínez-Castro, I., & Olano, A. (1996). Effects of continuous flow microwave treatment on chemical and microbiological characteristics of milk. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 202(1), 15–18.

    Article  CAS  Google Scholar 

  • Villamiel, M., Muñoz, M. M., Hernandez, A., & Corzo, N. (1998). β-Lactoglobulin denaturation and furosine formation during continuous microwave treatment of milk at temperatures of 90–120 °C. Milchwissenschaft, 53(8), 434–436.

    CAS  Google Scholar 

  • Wang, S., Tang, J., Cavalieri, R. P., & Davis, D. (2003a). Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments. Transactions of the ASAE, 46(4), 1175–1182.

    Google Scholar 

  • Wang, Y., Wig, T. D., Tang, J., & Hallberg, L. M. (2003b). Dielectric properties of foods relevant to RF and microwave pasteurization and sterilization. Journal of Food Engineering, 57(3), 257–268.

    Article  Google Scholar 

  • Wang, Y., Tang, J., Rasco, B., Kong, F., & Wang, S. (2008). Dielectric properties of salmon fillets as a function of temperature and composition. Journal of Food Engineering, 87, 236–246.

    Article  Google Scholar 

  • Wang, J., Tang, J. M., Wang, Y. F., & Swanson, B. (2009). Dielectric properties of egg whites and whole eggs as influenced by thermal treatments. LWT - Food Science and Technology, 42(7), 1204–1212.

    Article  CAS  Google Scholar 

  • Zhu, J., Kuznetsov, A. V., & Sandeep, K. P. (2007). Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters). International Journal of Thermal Sciences, 46(4), 328–341.

    Article  Google Scholar 

  • Zhu, X., Guo, W., & Wu, X. (2012). Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. Journal of Food Engineering, 109(2), 258–266.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was sponsored by grant from National Natural Science Foundation of China (No. 31171720) and Chinese Universities Scientific Fund (No. ZD2012017, Northwest A&F University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Guo, W. & Jia, Y. Temperature-Dependent Dielectric Properties of Raw Cow’s and Goat’s Milk from 10 to 4,500 MHz Relevant to Radio-frequency and Microwave Pasteurization Process. Food Bioprocess Technol 7, 1830–1839 (2014). https://doi.org/10.1007/s11947-014-1255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1255-4

Keywords

Navigation