Skip to main content
Log in

Effect of Cooling Rate and Temperature Cycles on Polymorphic Behavior of Sunflower Oil Stearins for Applications as Trans-fat Alternatives in Foods

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The new Food and Drug Administration (FDA) announcement makes it even more necessary to find alternatives to trans fats. The effect of cooling rate and temperature cycles on crystallization behavior and polymorphism of two solid fractions (stearins) obtained from a new variety of high-stearic high-oleic sunflower oil was studied by pulsed nuclear magnetic resonance (p-NMR), small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS) using synchrotron light and differential scanning calorimetry (DSC). Two stearins, hard (HS) and soft (SS), were crystallized in different processing conditions with the aim of obtaining the polymorphic forms required for different industrial applications. Data obtained from p-NMR studies showed that for both stearins, the maximum solid fat content decreased when crystallization temperature (T c ) increased; besides, crystallization rate decreased for slower cooling rate and higher T c . When HS was crystallized at 10 °C/min to 23 °C, it fractionated and two different β′ forms appeared together which was not suitable for processing purposes. SAXS and WAXS patterns indicated that slow cooling (1 or 0.5 °C/min) promoted crystallization of β′1 polymorph and retarded nucleation and growth of β′2 form. Slow cooling also promoted crystallization of β′1 form at two T c : 24 and 25 °C. When SS was kept isothermally at 17 °C for 90 min, three polymorphic forms appeared: α, β′1, and β2. Crystallization of the β2 polymorph was promoted with slow cooling and temperature cycles. DSC results were in agreement with X-ray findings. Selecting the proper thermal treatment, it was possible to obtain the β′1 form for bakery products or the β2 form for chocolate production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amara-Dali, W. B., Lesieur, P., Artzner, F., Karray, N., Attia, H., & Ollivon, M. (2007). Anhydrous goat’s milk fat: thermal and structural behaviors studied by coupled differential scanning calorimetry and X-ray diffraction. 2. Influence of cooling rate. Journal of Agricultural and Food Chemistry, 55(12), 4741–4751.

    Article  CAS  Google Scholar 

  • Anihouvi, P. P., Blecker, C., Dombree, A., & Danthine, S. (2013). Comparative study of thermal and structural behavior of four industrial lauric fats. Food and Bioprocess Technology, 6(12), 3381–3391.

    Article  CAS  Google Scholar 

  • Bootello, M. A., Garcés, R., Martínez-Force, E., & Salas, J. J. (2011). Dry fractionation and crystallization kinetics of high-oleic high-stearic sunflower oil. Journal of the American Oil Chemists’ Society, 88(10), 1511–1519.

    Article  CAS  Google Scholar 

  • Campos, R., Narine, S. S., & Marangoni, A. G. (2002). Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Research International, 35(10), 971–981.

    Article  CAS  Google Scholar 

  • Cisneros, A., Mazzanti, G., Campos, R., & Marangoni, A. G. (2006). Polymorphic transformation in mixtures of high- and low-melting fractions of milk fat. Journal of Agricultural and Food Chemistry, 54(16), 6030–6033.

    Article  CAS  Google Scholar 

  • De Graef, V., Vereecken, J., Smith, K. W., Bhaggan, K., & Dewettinck, K. (2012). Effect of TAG composition on the solid fat content profile, microstructure, and hardness of model fat blends with identical saturated fatty acid content. European Journal of Lipid Science and Technology, 114(5), 592–601.

    Article  Google Scholar 

  • De Jesus, V. (2014). FDA food labeling regulations for trans fat. In D. R. Kodali (Ed.), Trans fat replacement solutions (pp. 61–69). Urbana: AOCS Press.

    Google Scholar 

  • De Oliveira, I. F., Grimaldi, R., & Gonçalves, L. A. G. (2014). Effect of diacylglycerols on crystallization of palm oil (Elaeis guineensis). European Journal of Lipid Science and Technology, 116(7), 904–909.

    Google Scholar 

  • Fernández-Moya, V., Martínez-Force, E., & Garcés, R. (2005). Oils from improved high-stearic acid sunflower seeds. Journal of Agricultural and Food Chemistry, 53(7), 5326–5330.

    Article  Google Scholar 

  • Fredrick, E., Van de Walle, D., Walstra, P., Zijtveld, J. H., Fischer, S., Van der Meeren, P., & Dewettinck, K. (2011). Isothermal crystallization behaviour of milk fat in bulk and emulsified state. International Dairy Journal, 21(9), 685–695.

    Article  CAS  Google Scholar 

  • González Álvarez, J., Mangas Alonso, J. J., Díaz Llorente, D., Botas Velasco, C., Gutiérrez Álvarez, M. D., Arias Abrodo, P., & Blanco Gomis, D. (2013). Multivariate characterization of milk fat fractions by gas chromatography. Food and Bioprocess Technology, 6(10), 2651–2658.

    Article  Google Scholar 

  • Hachiya, I., Koyano, T., & Sato, K. (1989). Seeding effects on solidification behavior of cocoa butter and dark chocolate. I. Kinetics of solidification. Journal of American Oil Chemists’ Society, 66(12), 1757–1762.

    Article  CAS  Google Scholar 

  • Hartel, R. W. (2001). Crystallization in foods. New York: Aspen Publishers.

    Google Scholar 

  • Herrera, M. L. (1994). Crystallization behavior of hydrogenated sunflowerseed oil: kinetics and polymorphism. Journal of American Oil Chemists’ Society, 71(11), 1255–1260.

    Article  CAS  Google Scholar 

  • Herrera, M. L., & Hartel, R. W. (2000). Effect of processing conditions on crystallization kinetics of a milk fat model system. Journal of the American Oil Chemists’ Society, 77(11), 1177–1187.

    Article  CAS  Google Scholar 

  • Kloek, W., Walstra, P., & Van Vliet, T. (2000). Crystallization kinetics of fully hydrogenated palm oil in sunflower oil mixtures. Journal of the American Oil Chemists’ Society, 77(4), 389–398.

    Article  CAS  Google Scholar 

  • Loisel, C., Keller, G., Lecq, G., Bourgaux, C., & Ollivon, M. (1998). Phase transitions and polymorphism of cocoa butter. Journal of the American Oil Chemist Society, 75(4), 425–439.

    Article  CAS  Google Scholar 

  • Lopez, C., & Ollivon, M. (2009). Triglycerides obtained by dry fractionation of milk fat 2. Thermal properties and polymorphic evolutions on heating. Chemistry and Physics of Lipids, 159(1), 1–12.

    Article  CAS  Google Scholar 

  • Lopez, C., Lavigne, F., Lesieur, P., Bourgaux, C., & Ollivon, M. (2001a). Thermal and structural behavior of milk fat – 1. Unstable species of anhydrous milk fat. Journal of Dairy Science, 84(4), 756–766.

    Article  CAS  Google Scholar 

  • Lopez, C., Lavigne, F., Lesieur, P., Keller, G., & Ollivon, M. (2001b). Thermal and structural behavior of anhydrous milk fat. 2. Crystalline forms obtained by slow cooling. Journal of Dairy Science, 84(11), 2402–2412.

    Article  CAS  Google Scholar 

  • MacMillan, S. D., & Roberts, K. J. (2002). In situ small-angle X-ray scattering (SAXS) studies of polymorphism with the associated crystallization of cocoa butter fat using shearing conditions. Crystal Growth & Design, 2(3), 221–226.

    Article  CAS  Google Scholar 

  • Marangoni, A. G., & McGauley, S. E. (2003). Relationship between crystallization behavior and structure in cocoa butter. Crystal Growth & Design, 3(1), 95–108.

    Article  CAS  Google Scholar 

  • Martini, S., Herrera, M. L., & Hartel, R. W. (2001). Effect of cooling rate on nucleation behavior of milk fat sunflower oil blends. Journal of Agricultural and Food Chemistry, 49(7), 3223–3229.

    Article  CAS  Google Scholar 

  • Martini, S., Herrera, M. L., & Hartel, R. W. (2002). Effect of cooling rate on crystallization behavior of milk fat fraction/sunflower oil blends. Journal of the American Oil Chemists’ Society, 79(11), 1055–1062.

    Article  CAS  Google Scholar 

  • Martini, S., Rincón Cardona, J. A., Ye, Y., Tan, C. Y., Candal, R. J., & Herrera, M. L. (2013). Crystallization behavior of high-oleic high-stearic sunflower oil stearins under dynamic and static conditions. Journal of the American Oil Chemists’ Society, 90(12), 1773–1786.

    Article  CAS  Google Scholar 

  • Mazzanti, G., Guthrie, S. E., Sirota, E. B., Marangoni, A. G., & Idziak, S. H. J. (2004). Effect of minor components and temperature profiles on polymorphism in milk fat. Crystal Growth & Design, 4(6), 1303–1309.

    Article  CAS  Google Scholar 

  • Mudge, E. M., & Mazzanti, G. (2009). Rheo-NMR measurements of cocoa butter crystallized under shear flow. Crystal Growth & Design, 9(7), 3111–3118.

    Article  CAS  Google Scholar 

  • Pérez-Martínez, J. D., Reyes-Hernández, J., Dibildox-Alvarado, E., & Toro-Vazquez, J. F. (2012). Physical properties of cocoa butter/vegetable oil blends crystallized in a scraped surface heat exchanger. Journal of the American Oil Chemists’ Society, 89(2), 199–209.

    Article  Google Scholar 

  • Pore, M., Seah, H. H., Glover, J. W. H., Holmes, D. J., Johns, M. L., Wilson, D. I., & Moggridge, G. D. (2009). In-situ X-ray studies of cocoa butter droplets undergoing simulated spray freezing. Journal of the American Oil Chemists’ Society, 86(3), 215–225.

    Article  CAS  Google Scholar 

  • Rincón-Cardona, J. A., Martini, S., Candal, R. J., & Herrera, M. L. (2013). Polymorphic behavior during isothermal crystallization of high-stearic high-oleic sunflower oil stearins. Food Research International, 51(1), 86–97.

    Article  Google Scholar 

  • Rousseau, D., Forestière, K., Hill, A. R., & Marangoni, A. G. (1996). Restructuring butterfat through blending and chemical interesterification. 1. Melting behavior and triacylglycerol modifications. Journal of the American Oil Chemists’ Society, 73(8), 963–972.

    Article  CAS  Google Scholar 

  • Salas, J. J., Bootello, M. A., Martínez-Force, E., & Garcés, R. (2011). Production of stearate-rich butters by solvent fractionation of high-stearic high-oleic sunflower oil. Food Chemistry, 124(2), 450–458.

    Article  CAS  Google Scholar 

  • Sato, K. (1988). Crystallization of fatty acids. In N. Garti & K. Sato (Eds.), Crystallization and polymorphism of fats and fatty acids (pp. 97–137). New York: Marcel Dekker Inc.

    Google Scholar 

  • Singh, A. P., McClements, D. J., & Marangoni, A. G. (2002). Comparison of ultrasonic and pulsed NMR techniques for determination of solid fat content. Journal of the American Oil Chemists’ Society, 79(5), 431–437.

    Article  CAS  Google Scholar 

  • Sonwai, S., & Rousseau, D. (2010). Controlling fat bloom formation in chocolate – impact of milk fat on microstructure and fat phase crystallization. Food Chemistry, 119(1), 286–297.

    Article  CAS  Google Scholar 

  • Tarancón, P., Salvador, A., & Sanz, T. (2013). Sunflower oil–water–cellulose ether emulsions as trans-fatty acid-free fat replacers in biscuits: texture and acceptability study. Food and Bioprocess Technology, 6(9), 2389–2398.

    Article  Google Scholar 

  • Vanhoutte, B., Dewettinck, K., Foubert, I., Vanlerberghe, B., & Huyghebaert, A. (2002). The effect of phospholipids and water on the isothermal crystallisation of milk fat. European Journal of Lipid Science and Technology, 104(8), 490–495.

    Article  CAS  Google Scholar 

  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Council of Argentina (CONICET) through Project PIP 11220110101025, by the National Agency for the Promotion of Science and Technology (ANPCyT) through Project PICT 2013-0897, by the University of Buenos Aires through Project 20020130100136BA, and by the Synchrotron Light National Laboratory (LNLS, Campinas, Brazil) through project D11A-SAXS1-15140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María L. Herrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, M.L., Rodríguez-Batiller, M.J., Rincón-Cardona, J.A. et al. Effect of Cooling Rate and Temperature Cycles on Polymorphic Behavior of Sunflower Oil Stearins for Applications as Trans-fat Alternatives in Foods. Food Bioprocess Technol 8, 1779–1790 (2015). https://doi.org/10.1007/s11947-015-1535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-015-1535-7

Keywords

Navigation