Skip to main content

Advertisement

Log in

Ultraviolet-C Radiation on the Fresh Chicken Breast: Inactivation of Major Foodborne Viruses and Changes in Physicochemical and Sensory Qualities of Product

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This study investigated the effects of diverse doses (60–3600 mWs/cm2) of ultraviolet radiation (UV-C; 260 nm) on the inactivation of two types of foodborne viruses, the hepatitis A virus (HAV) and murine norovirus-1 (MNV-1; a human norovirus surrogate). Experimentally contaminated fresh chicken breasts were used as substrates, and the effects of UV-C radiation on the physicochemical properties and sensory qualities of chicken breasts were examined. MNV-1 and HAV titers significantly decreased (P < 0.05) when fresh chicken breasts were progressively irradiated with UV-C light. Over 1 log reduction in the titers of MNV-1 (1.23 log) and HAV (1.17 log) was detected when fresh chicken breasts were irradiated with 3600 mWs/cm2 of UV-C light. The calculated D-values for MNV-1 and HAV titers fell in the range of 3138.88–3428.57 and 2854.12–3076.92 mWs/cm2, respectively. Chicken breasts exposed to higher doses of UV-C radiation turned darker, exhibited more redness, and displayed prominent shades of yellow color. These changes strongly correlated with a decrease in the Hunter “L” values and an increase in the Hunter “a” and Hunter “b” values, respectively. This was also accompanied by an increase in the lipid peroxidation of the breast meat, which resulted in higher thiobarbituric acid reactive substance (TBARS) values. However, the UV-C radiation did not induce any pH changes into the food product. Chicken breasts treated with over 1800 mWs/cm2 of UV-C radiation displayed compromised sensory properties, whereas those treated with 60–1200 mWs/cm2 of UV-C witnessed satisfactory consumer acceptance. Therefore, the current study suggests that the use of the 600–1200 mWs/cm2 of UV-C radiation, in combination with other decontamination techniques (such as the hygienic processing of chicken breasts in well-sanitized processing plants), could be very effective in reducing more than 90 % (1 log) of the MNV-1 and HAV counts, without causing any deleterious changes to the physicochemical and sensory qualities of the meat surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avsaroglu, M. D., Buzrul, S., Alpas, H., Akcelik, M., & Bozoglu, F. (2006). Use of the Weibull model for lactococcal bacteriophage inactivation by high hydrostatic pressure. International Journal of Food Microbiology, 108, 78–83.

    Article  Google Scholar 

  • Bialka, K., Demirci, A., & Puri, V. M. (2008). Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV-light. Journal of Food Engineering, 85, 444–449.

    Article  Google Scholar 

  • Bidawid, S., Farber, J. M., Sattar, S. A., & Hayward, S. (2000). Heat inactivation of hepatitis A virus in dairy foods. Journal Food Protection, 4, 522–528.

    Google Scholar 

  • Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry—a critical review. Journal of the Science of Food and Agriculture, 80, 637–645.

    Article  CAS  Google Scholar 

  • Blactchley, E. R., III, & Peel, M. M. (2001). Disinfection by ultraviolet irradiation. In S. S. Block (Ed.), Disinfection, sterilization, and preservation (5th ed.). Philadelphia, PA: Lea & Febiger.

    Google Scholar 

  • Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.

    Article  CAS  Google Scholar 

  • Butot, S., Putallaz, T., Amoroso, R., & Sanchez, G. (2009). Inactivation of enteric viruses in minimally processed berries and herbs. Applied and Environmental Microbiology, 75, 4155–4161.

    Article  CAS  Google Scholar 

  • Chouliara, E., Karatapanis, A., Savvaidis, I. N., & Kontomonas, M. G. (2007). Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 °C. Food Microbiology, 24, 607–617.

    Article  CAS  Google Scholar 

  • Chun, H. H., Kim, J. Y., Lee, B. D., Yu, D. J., & Song, K. B. (2010a). Effect of UV-C irradiation on the inactivation of inoculated pathogens and quality of chicken breasts during storage. Food Control, 21, 276–280.

    Article  CAS  Google Scholar 

  • Chun, H. H., Kim, H. J., Won, M., Chung, K. S., & Song, K. B. (2010b). A comparison of kinetic models of foodborne pathogen inactivation by aqueous chlorine dioxide, fumaric acid, and ultraviolet-C. Journal of Applied Biological Chemistry, 53, 243–248.

    CAS  Google Scholar 

  • Cook, A., Odumeru, J., Lee, S., & Pollari, F. (2012). Campylobacter, Salmonella, Listeria monocytogenes, verotoxigenic Escherichia coli, and Escherichia coli prevalence, enumeration, and subtypes on retail chicken breasts with and without skin. Journal of Food Protection, 75, 34–40.

    Article  Google Scholar 

  • Corrêa, A. A., Carratala, A., Baradi, C. R. M. B., Calvo, M., Girones, E., & Bofill-Mas, S. (2012). Comparative inactivation of murine norovirus, human adenovirus, and human JC polyomavirus by chlorine in seawater. Applied and Environmental Microbiology, 78, 6450–6457.

    Article  Google Scholar 

  • Cromeans, T., Sobsey, M. D., & Fields, H. A. (1987). Development of a plaque assay for a cytopathic, rapidly replicating isolate of hepatitis A virus. Journal of Medical Virology, 22, 45–56.

    Article  CAS  Google Scholar 

  • de Roda Husman, A. M., Bijkerk, P., Lodder, W., van den Burg, H., Pribil, W., Cabaj, A., Gehringer, P., Sommer, R., & Duizer, E. (2004). Calicivirus inactivation by nonionizing (253.7-nanometer-wavelenght [UV]) and ionizing (gamma) radiation. Applied and Environmental Microbiology, 70, 5089–5093.

    Article  Google Scholar 

  • de Souza, P. M., & Fernández, A. (2011). Effects of UV-C on physicochemical quality attributes and Salmonella enteritidis inactivation in liquid egg products. Food Control, 22, 1385–1392.

    Article  Google Scholar 

  • Donnan, E. J., Fielding, J. E., Gregory, J. E., Lalor, K., Rowe, S., Goldsmith, P., Antoniou, M., Fullerton, K. E., Knope, K., Copland, J. G., Bowden, D. S., Tracy, S. L., Hogg, G. G., Tan, A., Adamopoulos, J., Gaston, J., & Vally, H. (2012). A multistate outbreak of hepatitis A associated with semidried tomatoes in Australia, 2009. Clinical Infectious Disease, 54, 775–781.

    Article  Google Scholar 

  • Fellenberg, M. A., & Speisky, H. (2006). Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. World's Poultry Science Journal, 62, 53–70.

    Article  Google Scholar 

  • Fino, V. R., & Kniel, K. E. (2008). UV light inactivation of hepatitis A virus, aichi virus, and feline calicivirus on strawberries, green onions, and lettuce. Journal of Food Protection, 71, 908–913.

    Google Scholar 

  • Fletcher, D. L. (1999). Broiler breast meat color variation, pH, and texture. Poultry Science, 78, 1323–1329.

    Article  CAS  Google Scholar 

  • Ha, J. H., Lee, Y. S., Na, B. J., Bae, D. D., & Ha, S. D. (2009). Effects of ultraviolet irradiation to reduce the numbers of food-borne pathogenic microorganisms on stainless steel chips. Journal of the Korean Society for Applied Biological Chemistry, 52, 301–304.

    Article  CAS  Google Scholar 

  • Heaton, J. C., & Jones, K. (2008). Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere—a review. Journal of Applied Microbiology, 104, 613–626.

    Article  CAS  Google Scholar 

  • Hong, Y. H., Ku, K. J., Kim, M. K., Won, M. S., Chung, K. S., & Song, K. B. (2008). Survival of Escherichia coli O157:H7 and Salmonella typhimurium inoculated on chicken by aqueous chlorine dioxide treatment. Journal of Microbiology and Biotechnology, 18, 742–745.

    CAS  Google Scholar 

  • Hunter, R. S., & Harold, R. W. (1987). The Measurement of appearance (2nd ed.). New York, NY: Wiley Interscience Publication.

    Google Scholar 

  • Isohanni, P. M., & Lyhs, U. (2009). Use of ultraviolet irradiation to reduce Campylobacter jejuni on broiler meat. Poultry Science, 88, 661–668.

    Article  CAS  Google Scholar 

  • Jean, J., Morales-Rayas, R., Anoman, M. N., & Lamhoujeb, S. (2011). Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiology, 28, 568–572.

    Article  CAS  Google Scholar 

  • Karst, S. M., Wobus, C. E., Lay, M., Davidson, J., & Virgin, H. W., IV. (2003). STAT1-dependent innate immunity to a Norwalk-like virus. Science, 299, 1575–1578.

    Article  CAS  Google Scholar 

  • Kim, T., Silva, J., & Chen, T. (2002). Effects of UV irradiation on selected pathogens in peptone water and on stainless steel and chicken meat. Journal of Food Protection, 65, 1142–1145.

    CAS  Google Scholar 

  • Kingsley, D. H., Holliman, D. R., Calci, K. R., Chen, H., & Flick, G. J. (2007). Inactivation of a norovirus by high-pressure processing. Applied Environmental Microbiology, 73, 581–585.

    Article  CAS  Google Scholar 

  • Ko, J. K., Ma, Y. H., & Song, K. B. (2005). Effect of chlorine dioxide treatment on microbial growth and qualities of chicken breast. Journal of Food Science and Nutrition, 10, 122–129.

    Article  CAS  Google Scholar 

  • Koopmans, M., & Duizer, E. (2004). Foodborne viruses: an emerging problem. International Journal of Food Microbiology, 90, 23–41.

    Article  Google Scholar 

  • Lebovka, N. I., & Vorobiev, E. (2004). On the origin of the deviation from the first-order kinetics in inactivation of microbial cells by pulsed electric fields. International Journal of Food Microbiology, 91, 83–89.

    Article  CAS  Google Scholar 

  • Lenes, D., Deboosere, N., Menard-Szczebara, F., Jossent, J., Alexandre, V., Machinal, C., & Vialette, M. (2010). Assessment of the removal and inactivation of influenza viruses H5N1 and H1N1 by drinking water treatment. Water Research, 44, 2473–2486.

    Article  CAS  Google Scholar 

  • Lyon, S. A., Fletcher, D. L., & Berrang, M. E. (2007). Germicidal ultraviolet light to lower numbers of Listeria monocytogenes on broiler breast fillets. Poultry Science, 86, 964–967.

    Article  CAS  Google Scholar 

  • Lynch, M. F., Tauxe, R. V., & Hedberg, C. W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiology and Infection, 137, 307–315.

    Article  CAS  Google Scholar 

  • Malek, M., Barzilay, E., Kramer, A., Camp, B., Jaykus, L. A., Escudero-Abarca, B., Derrick, G., White, P., Gerba, C., Higgins, C., Vinje, J., Glass, R., Lynch, M., & Widdowson, M. A. (2009). Outbreak of norovirus infection among river rafters associated with packaged delicatessen meat, Grand Canyon, 2005. Clinical Infectious Disease, 48, 31–37.

    Article  Google Scholar 

  • Noda, M., Fukuda, S., & Nishio, O. (2008). Statistical analysis of attack rate in norovirus foodborne outbreaks. International Journal of Food Microbiology, 122, 216–220.

    Article  Google Scholar 

  • Nwachuku, N., Gerba, C. P., Oswald, A., & Mashadi, F. D. (2005). Comparative inactivation of adenovirus serotypes by UV light disinfection. Applied and Environmental Microbiology, 71, 5633–5636.

    Article  CAS  Google Scholar 

  • Park, G. W., Linden, K. G., & Sobsey, M. D. (2011). Inactivation of murine norovirus, feline calicivirus and echo 12 as surrogates for human norovirus (NoV) and coliphage (F+) MS2 by ultraviolet light (254 nm) and the effect of cell association on UV inactivation. Letters in Applied Microbiology, 52, 162–167.

    Article  CAS  Google Scholar 

  • Praveen, C., Dancho, B. A., Kingsley, D. H., Calci, K. R., Meade, G. K., Mena, K. D., & Pillai, S. D. (2013). Susceptibility of murine norovirus and hepatitis A virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks. Applied and Environmental Microbiology, 79, 3796–3801.

    Article  CAS  Google Scholar 

  • Ray, B. (2000). Factor influencing microbial growth in food. In B. Ray (Ed.), Fundamental food microbiology (3rd ed.). Washington: CRC Press.

    Google Scholar 

  • Renerre, M. (1990). Review : Factors involved in the discoloration of beef meat. International Journal of Food Science and Technology, 25, 613–630.

    Article  CAS  Google Scholar 

  • Robesyn, E., De Schrijver, K., Wollants, E., Top, G., Verbeeck, J., & Van Ranst, M. (2009). An outbreak of hepatitis A associated with the consumption of raw beef. Journal of Clinical Virology, 44, 207–210.

    Article  Google Scholar 

  • Rönnqvist, M., Mikkelä, A., Tuominen, P., Salo, S., & Maunula, L. (2014). Ultraviolet light Inactivation of murine morovirus and human norovirus GII: PCR may overestimate the persistence of noroviruses even when combined with pre-PCR treatments. Food and Environmental Virology, 6, 48–57.

    Article  Google Scholar 

  • Schmid, D., Stüger, H. P., Lederer, I., Pichler, A. M., Kainz-Arnfelser, G., Schreier, E., & Allerberger, F. (2007). A foodborne norovirus outbreak due to manually prepared salad, Austria 2006. Infection, 35, 232–239.

    Article  CAS  Google Scholar 

  • Siebenga, J. J., Vennema, H., Zheng, D. P., Vinje, J., Lee, B. E., Pang, X. L., Ho, E. C., Lim, W., Choudekar, A., Broor, S., Halperin, T., Rasool, N. B., Hewitt, J., Greening, G. E., Jin, M., Duan, Z. J., Lucero, Y., O'Ryan, M., Hoehne, M., Schreier, E., Ratcliff, R. M., White, P. A., Iritani, N., Reuter, G., & Koopmans, M. (2009). Norovirus illness is a global problem: emergence and spread of norovirus GII. 4 variants, 2001–2007. Journal of Infectious Diseases, 200, 802–812.

    Article  Google Scholar 

  • Smirnov, Y. M., Rodrigues-Molto, M., & Famada, M. (1983). Protein RNA interaction in encephalomyocarditis virus as revealed by UV light-induced covalent linkages. Journal of Virology, 45, 1048–1055.

    CAS  Google Scholar 

  • Stermer, R. A., Lasater-Smith, M., & Brasington, C. F. (1987). Ultraviolet radiation—an effective bactericide for fresh meat. Journal of Food Protection, 50, 108–111.

    Google Scholar 

  • Suzuki, H., & Yamamoto, S. (2009). Campylobacter contamination in retail poultry meats and by-products in the world: a literature survey. Journal of Veterinary Medical Science, 71, 255–261.

    Article  Google Scholar 

  • Turcios, R. M., Widdowson, M. A., Sulka, A. C., Mead, P. S., & Glass, R. I. (2006). Reevaluation of epidemiological criteria for identifying outbreaks of acute gastroenteritis due to norovirus : United States, 1998–2000. Clinical Infectious Diseases, 42, 964–969.

    Article  Google Scholar 

  • US Food and Drug Administration. (2007). Irradiation in the production, processing and handling of food: 21CFR. Part 179.39. Code of Federal Regulations, 3, 439–440.

    Google Scholar 

  • Wallner-Pendleton, E. A., Sumner, S. S., Froning, G., & Stetson, L. (1994). The use of ultraviolet radiation to reduce Salmonella and psychrotrophic bacterial contamination on poultry carcasses. Poultry Science, 73, 1327–1333.

    Article  CAS  Google Scholar 

  • Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K. O., Sosnovtsev, S. V., Belliot, G., Krug, A., Mackenzie, J. M., Green, K. Y., & Virgin, H. W. (2004). Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biology, 2, 2076–2084.

    Article  CAS  Google Scholar 

  • Woods, J. W., & Burkhardt, W., III. (2010). Occurrence of norovirus and hepatitis A virus in US oysters. Food Environmental Virology, 2, 176–182.

    Article  Google Scholar 

  • Wright, A. C., Danyluk, M. D., & Otwell, W. S. (2009). Pathogens in raw foods: what the salad bar can learn from the raw bar. Current Opinion Biotechnology, 20, 172–177.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by “Cooperative Research Program for Agriculture Science & Technology Development (Project No. 009221),” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Do Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.Y., Ha, SD. Ultraviolet-C Radiation on the Fresh Chicken Breast: Inactivation of Major Foodborne Viruses and Changes in Physicochemical and Sensory Qualities of Product. Food Bioprocess Technol 8, 895–906 (2015). https://doi.org/10.1007/s11947-014-1452-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1452-1

Keywords

Navigation