Skip to main content
Log in

Osmotic Dehydration of Yacon Using Glycerol and Sorbitol as Solutes: Water Effective Diffusivity Evaluation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Osmotic dehydration of yacon (Smallanthus sonchifolius) was carried out in varying temperatures (30 and 50 °C) and glycerol or sorbitol concentration (30, 50, and 70 %). The solution of Fick’s law for unsteady state mass transfer in a plane sheet configuration was used to calculate the effective diffusivities of water. Peleg’s model was used to predict the equilibrium condition, which was shown to be appropriate for water loss and solute uptake. It was found to have two rate periods of dehydration. For the above conditions of osmotic dehydration, the effective diffusivity of water was found to be in the range of 5.82 ± 0.68 × 10−10 to 2.15 ± 0.61 × 10−10 m2/s in first period and 1.60 ± 0.28 × 10−10 to 1.29 ± 0.24 × 10−10 m2/s in second period for glycerol tests and, for sorbitol, was 3.82 ± 0.17 × 10−10 to 1.54 ± 0.50 × 10−10 m2/s for the first period and 1.73 ± 0.04 × 10−10 to 1.33 ± 0.06 × 10−10 m2/s for the second. The greatest reduction in water activity was achieved when 70 % of glycerol was used at 50 °C (final a w 0.704 ± 0.010). The treatments with 70 % of solution concentration at 30 °C were repeated, and by adding 20 g/L of calcium lactate in the osmotic solution, it resulted in higher calcium content, strengthening the cell wall for both solutes. Microstructure of the yacon samples (fresh, blanched, and in different conditions of osmotic dehydration) was examined by scanning electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera, J. M., & Stanley, D. W. (1999). Microstructural principles of food processing and engineering (2nd edn.). Gaithersburg, Maryland: Aspen.

  • Angilelli, K. G., Orives, J. R., Silva, H. C., Coppo, R. L., Moreira, I., & Borsato, D. (2014). Multicomponent diffusion during osmotic dehydration process in melon pieces: influence of film coefficient. Journal of Food Processing and Preservation. doi:10.1111/jfpp.12236.

    Google Scholar 

  • AOAC (1990, 2002, 2006). Official methods of analysis. Washington, DC: Association of Official Analytical Chemists.

  • Azcón-Bieto, J., & Talón, M. (2000). Fundamentos de fisiología vegetal. Spain: Mac Graw-Hill Interamerica y Universitat de Barcelona, (Chapter 14).

  • Barrera, C., Betoret, N., & Fito, P. (2004). Ca2+ and Fe2+ influence on the osmotic dehydration kinetics of apple slices (Var Granny Smith). Journal of Food Engineering, 65, 9–14.

    Article  Google Scholar 

  • Barrera, C., Betoret, N., Corell, P., & Fito, P. (2009). Effect of osmotic dehydration on the stabilization of calcium-fortified apple slices (var. Granny Smith): influence of operating variables on process kinetics and compositional changes. Journal of Food Engineering, 92, 416–424.

    Article  CAS  Google Scholar 

  • Bellary, A. N., Sowbhagya, H. B., & Rastogi, N. K. (2011). Osmotic dehydration assisted impregnation of curcuminoids in coconut slices. Journal of Food Engineering, 105, 453–459.

    Article  CAS  Google Scholar 

  • Brochier, B., Marczak, L. D. F., & Noreña, C. P. Z. (2014). Use of different & kinds of solutes alternative to sucrose in osmotic dehydration of yacon. Brazilian Archives of Biology and Technology. doi:10.1590/S1516-8913201400035.

  • Castelló, M. L., Igual, M., Fito, P. J., & Chiralt, A. (2009). Influence of osmotic dehydration on texture, respiration and microbial stability of apple slices (Var. Granny Smith). Journal of Food Engineering, 91, 1–9.

    Article  Google Scholar 

  • Chirife, J., & Buera, M. D. P. (1994). Water activity, glass transition and microbial stability in concentrated/semimols food systems. Journal of Food Science, 59(5), 925–927.

    Article  Google Scholar 

  • Codex Alimentarius (2012). Food standards: GSFA online. FAO/WHO, USA. www.codexalimentarius.net/gsfaonline/index.html. Accessed 25 Aug 2012.

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford: Clarendon.

    Google Scholar 

  • Dionello, R. G., Berbert, P. A., Molina, M. A. B., Viana, A. P., Carlesso, V. O., & Queiroz, V. A. V. (2007). Desidratação por imersão-impregnação de abacaxi em soluções de sacarose e em xarope de açúcar invertido. Ciência e Tecnologia de Alimentos, 27(4), 701–709.

    Article  CAS  Google Scholar 

  • El-Aouar, A. A., Azoubel, P. M., Barbosa, J. L., Jr., & Murr, F. E. X. (2006). Influence of the osmotic agent on the osmotic dehydration of papaya (Carica papaya L.). Journal of Food Engineering, 75, 267–274.

    Article  CAS  Google Scholar 

  • Fante, L., Scher, C. F., Noreña, C. P. Z., & Rios, A. O. (2013). Study of enzyme inactivation using steam in yacon (Smallanthus sonchifolius) roots. Journal of Food Processing and Preservation, 37, 16–24.

    Article  CAS  Google Scholar 

  • Fennema, O. R. (2010). Química de alimentos (4th ed.). Porto Alegre: Artmed.

    Google Scholar 

  • Garcı́a-Martı́nez, E., Martı́nez-Monzó, J., Camacho, M. M., & Martı́nez-Navarrete, N. (2002). Characterisation of reused osmotic solution as ingredient in new product formulation. Food Research International, 35, 307–313.

    Article  Google Scholar 

  • Goto, K., Fukai, K., Hikida, J., Nanjo, F., & Hara, Y. (1995). Isolation and structural analysis of oligosaccharides from yacon (Polymnia sonchifolia). Bioscience, Biotechnology, and Biochemistry, 59, 2346–2347.

    Article  CAS  Google Scholar 

  • Gras, M. L., Vidal, D., Betoret, N., Chiralt, A., & Fito, P. (2003). Calcium fortification of vegetables by vacuum impregnation. Interactions with cellular matrix. Journal of Food Engineering, 56, 279–284.

    Article  Google Scholar 

  • Habib, N. C., Honoré, S. M., Genta, S. B., & Sánchez, S. S. (2011). Hypolipidemic effect of Smallanthus sonchifolius (yacon) roots on diabetic rats: biochemical approach. Chemico-Biological Interactions, 194, 31–39.

    Article  CAS  Google Scholar 

  • Heredia, A., Barrera, C., & Andrés, A. (2007). Drying of cherry tomato by a combination of different dehydration techniques. Comparison of kinetics and other related properties. Journal of Food Engineering, 80, 111–118.

    Article  CAS  Google Scholar 

  • Johansson, I., Larsson, C., Ek, B., & Kjellbom, P. (1996). The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. The Plant Cell, 8, 1181–1191.

    CAS  Google Scholar 

  • Kotovicz, V., Ellendersen, L. S. N., Clarindo, M. M., & Masson, M. L. (2013). Influence of process conditions on the kinetics of the osmotic dehydration of yacon (Polymnia sonchifolia) in fructose solution. Journal of Food Processing and Preservation. doi:10.1111/jfpp.12064.

    Google Scholar 

  • Lenart, A. (1996). Osmo-convective drying of fruits and vegetables: technology and application. Drying Technology, 14, 391–413.

    Article  CAS  Google Scholar 

  • Li, H., & Ramaswamy, H. S. (2006). Osmotic dehydration of apple cylinders: III. Continuous medium flow microwave heating conditions. Drying Technology, 24, 643–651.

    Article  CAS  Google Scholar 

  • Maldonado, S., Santapaola, J. E., Singh, J., Torrez, M., & Garay, A. (2008). Cinética de la transferencia de masa durante la deshidratación osmótica de yacón (Smallanthus sonchifolius). Ciência e Tecnologia de Alimentos, 28, 251–256.

    Article  Google Scholar 

  • Manrique, I., Párraga, A., & Hermann, M. (2005). Jarabe de yacon: Principios y Procesamiento. Series: Conservación y uso de la biodiversidad de raíces y tubérculos andinos: Una década de investigación para el desarrolo (1993–2003). 8A. International Potato Center Univesidad Nacional Alcides Carrión. Erbacher Foundation. Lima: Swiss Agency for Development and Cooperation.

  • Mercali, G. D., Kechinski, C. P., Coelho, J. A., Tessaro, I. C., & Marczak, L. D. F. (2010). Estudo da transferência de massa durante a desidratação osmótica de mirtilo. Brazilian Journal of Food Technology, 13, 91–97.

    Article  Google Scholar 

  • Mercali, G. D., Marczak, L. D. F., Tessaro, I. C., & Noreña, C. P. Z. (2011). Evaluation of water, sucrose and NaCl effective diffusivities during osmotic dehydration of banana (Musa sapientum, shum.). LWT - Food Science and Technology, 44, 82–91.

    Article  CAS  Google Scholar 

  • Michels, I. (2005). Aspectos tecnológicos do processamento mínimo de tubérculos de yacon (Polymnia sonchifolia) armazenados em embalagens com atmosfera modificada, Dissertação de Mestrado. Curitiba: Universidade Federal do Paraná.

  • Moraga, M. J., Moraga, G., & Martínez-Navarrete, N. (2011). Effect of the re-use of the osmotic solution on the stability of osmodehydro-refrigerated grapefruit. LWT - Food Science and Technology, 44, 35–41.

    Article  CAS  Google Scholar 

  • Moreira, R., Chenlo, F., Torres, M. D., & Vázquez, G. (2007). Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT - Food Science and Technology, 40, 1507–1514.

    Article  CAS  Google Scholar 

  • Ojansivu, I., Ferreira, C. L., & Salminen, S. (2011). Yacon, a new source of prebiotic oligosaccharides with a history of safe use. Trends in Food Science & Technology, 22, 40–46.

    Article  CAS  Google Scholar 

  • Osorio, C., Franco, M. S., Castaño, M. P., González-Miret, M. L., Heredia, F. J., & Morales, A. L. (2007). Colour and flavour changes during osmotic dehydration of fruits. Innovative Food Science and Emerging Technologies, 8, 353–359.

    Article  CAS  Google Scholar 

  • Ozdemir, M., Ozen, B. F., Dock, L. L., & Floros, J. D. (2008). Optimization of osmotic dehydration of diced green peppers by response surface methodology. LWT - Food Science and Technology, 41, 2044–2050.

    Article  CAS  Google Scholar 

  • Pan, Z., Shih, C., McHugh, T. H., & Hirschberg, E. (2008). Study of banana dehydration using sequential infrared radiation heating and freeze-drying. LWT - Food Science and Technology, 41, 1944–1951.

    Article  CAS  Google Scholar 

  • Patel, S., & Goyal, A. (2012). The current trends and future perspectives of prebiotics research: a review. 3 Biotech, 2, 115–125.

    Article  CAS  Google Scholar 

  • Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Science, 53, 1216–1219.

    Article  Google Scholar 

  • Raoult-Wack, A. L. (1994). Recent advances in the osmotic dehydration of foods. Trends in Food Science & Technology, 5, 255–260.

    Article  Google Scholar 

  • Raoult-Wack, A. L., Guilbert, S., Le Maguer, M., & Rios, G. (1991). Simultaneous water and solute transport in shrinking media. Part I. Application to dewatering and impregnation soaking process analysis (osmotic dehydration). Drying Technology, 9, 589–612.

    Article  Google Scholar 

  • Rastogi, N. K., & Niranjan, K. (1998). Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. Journal of Food Science, 63, 508–511.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., & Raghavarao, K. S. M. S. (1997). Water and solute diffusion coefficients of carrot as a function of temperature and concentration during osmotic dehydration. Journal of Food Engineering, 34, 429–440.

    Article  Google Scholar 

  • Rastogi, N. K., & Raghavarao, K. S. M. S. (2004). Mass transfer during osmotic dehydration of pineapple: considering Fickian diffusion in cubical configuration. LWT - Food Science and Technology, 37, 43–47.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., Angersbach, A., & Knorr, D. (2000). Valuation of mass transfer mechanisms during osmotic treatment of plant materials. Journal of Food Science, 65, 1016–1021.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., Raghavarao, K. S. M. S., Niranjan, K., & Knorr, D. (2002). Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science and Technology, 13, 48–59.

    Article  CAS  Google Scholar 

  • Rastogi, N. K., Raghavarao, K. S. M. S., & Niranjan, K. (2005). Emerging technologies for food processing. (Chapter 9: Developments in osmotic dehydration). pp. 222–249.

  • Rizzolo, A., Gerli, F., Prinzivalli, C., Buratti, S., & Torreggiani, D. (2007). Headspace volatile compounds during osmotic dehydration of strawberries (cv Camarosa): influence of osmotic solution composition and processing time. LWT - Food Science and Technology, 40, 529–535.

    Article  CAS  Google Scholar 

  • Rosa, M. D., & Giroux, F. (2001). Osmotic treatments (OT) and problems related to the solution management. Journal of Food Engineering, 49, 223–236.

    Article  Google Scholar 

  • Rózek, A., Achaerandio, I., Güell, C., López, F., & Ferrando, M. (2009). Grape phenolic impregnation by osmotic treatment: influence of osmotic agent on mass transfer and product characteristics. Journal of Food Engineering, 94, 59–68.

    Article  Google Scholar 

  • Salvatori, D., Andrés, A., Albors, A., Chiralt, A., & Fito, P. (1998). Structural and compositional profiles in osmotically dehydrated apple. Journal of Food Science, 63, 606–610.

    Article  CAS  Google Scholar 

  • Saurel, R., Raoult-Wack, A. L., Rios, G., & Guilbert, S. (1994). Mass transfer phenomena during osmotic dehydration of apple I. Fresh plant tissue. International Journal of Food Science and Technology, 29, 531–542.

    Article  CAS  Google Scholar 

  • Scher, C. F., Rios, A. O., & Noreña, C. P. Z. (2009). Hot air drying of yacon (Smallanthus sonchifolius) and its effect on sugar concentrations. International Journal of Food Science and Technology, 44, 2169–2175.

    Article  CAS  Google Scholar 

  • Schmidt, F. C., Carciofi, B. A. M., & Laurindo, J. B. (2009). Application of diffusive and empirical models to hydration, dehydration and salt gain during osmotic treatment of chicken breast cuts. Journal of Food Engineering, 91, 553–559.

    Article  Google Scholar 

  • Shi, J., & Le Maguer, M. (2002). Osmotic dehydration of foods: mass transfer and modeling aspects. Food Reviews International, 18(4), 305–335.

    Article  Google Scholar 

  • Silva, K., Fernandes, M. A., & Mauro, M. A. (2014a). Osmotic dehydration of pineapple with impregnation of sucrose, calcium, and ascorbic acid. Food and Bioprocess Technology, 7, 385–397.

    Article  CAS  Google Scholar 

  • Silva, K., Fernandes, M. A., & Mauro, M. A. (2014b). Effect of calcium on the osmotic dehydration kinetics and quality of pineapple. Journal of Food Engineering, 134, 37–44.

    Article  CAS  Google Scholar 

  • Singh, B., Kumar, A., & Gupta, A. K. (2007). Study of mass transfer kinetics and effective diffusivity during osmotic dehydration of carrot cubes. Journal of Food Engineering, 79, 471–480.

    Article  CAS  Google Scholar 

  • Souraki, B. A., Ghavami, M., & Tondro, H. (2014). Correction of moisture and sucrose effective diffusivities for shrinkage during osmotic dehydration of apple in sucrose solution. Food and Bioproducts Processing, 92, 1–8.

    Article  CAS  Google Scholar 

  • Toğrul, I. T., & İspir, A. (2008). Equilibrium distribution coefficients during osmotic dehydration of apricot. Food and Bioproducts Processing, 86, 254–267.

    Article  Google Scholar 

  • Torreggiani, D. (1993). Osmotic dehydration in fruit and vegetable processing. Food Research International, 26, 59–68.

    Article  Google Scholar 

  • Torres, J. D., Talens, P., Escriche, I., & Chiralt, A. (2006). Influence of process conditions on mechanical properties of osmotically dehydrated mango. Journal of Food Engineering, 74, 240–246.

    Article  CAS  Google Scholar 

  • Tyerman, S. D., Bohnert, H. J., Maurel, C., Steudle, E., & Smith, J. A. C. (1999). Plant aquaporins, their molecular biology, biophysics and significance for plant water relations. Journal of Experimental Botany, 50, 1055–1071.

    CAS  Google Scholar 

  • Vermeulen, A., Marvig, C. L., Daelman, J., Xhaferi, R., Nielsen, D. S., & Devlieghere, F. (2014). Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: the effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids. Food Microbiology. doi:10.1016/j.fm.2014.01.003.

    Google Scholar 

  • Vieira, G. S. (2010). Otimização do processo de desidratação osmótica de goiaba e avaliação do uso de pulso de vácuo e sais de cálcio. Msc Thesis. Campinas, Brazil: Department of Food Engineering, Campinas State University.

  • Yao, Z., & Le Maguer, M. (1997). Mathematical modelling and simulation of mass transfer in osmotic dehydration processes. Part III: parametric study. Journal of Food Engineering, 32, 33–46.

    Article  Google Scholar 

  • Zhengyong, Y., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2008). Sorption isotherms and moisture sorption hysteresis of intermediate moisture content banana. Journal of Food Engineering, 86, 342–348.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from Coordenadoria de Aperfeiçoamento de Pessoal para o Ensino Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and the product donation from Corn Products do Brasil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bethania Brochier, Ligia Damasceno Ferreira Marczak or Caciano Pelayo Zapata Noreña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brochier, B., Marczak, L.D.F. & Noreña, C.P.Z. Osmotic Dehydration of Yacon Using Glycerol and Sorbitol as Solutes: Water Effective Diffusivity Evaluation. Food Bioprocess Technol 8, 623–636 (2015). https://doi.org/10.1007/s11947-014-1432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1432-5

Keywords

Navigation