Skip to main content
Log in

Modeling of Gel Layer-Controlled Fruit Juice Microfiltration in a Radial Cross Flow Cell

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

An analysis of gel layer-controlled microfiltration in a radial cross flow cell is presented in this study. Clarification of a real fruit juice, i.e., cactus pear juice is considered. An expression of Sherwood number is derived using an integral method under the framework of boundary layer theory. The effects of viscosity and temperature are incorporated in the Sherwood number relationship through the Sieder–Tate type correction factor and Stokes–Einstein equation, respectively. The transient flux behavior is modeled successfully both for the total recycle mode and batch concentration mode of operation. The model parameters are evaluated from the total recycle mode and are used in the predictive calculation of the batch concentration mode. In batch concentration mode of filtration, the model predicted results match excellently with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Constant in Eq. 8 (=3Re ∙ Sc ∙ h/R)

a 1,a 2,a 3 :

Constants in Eq. 9

A m :

Effective membrane area (square meter)

C :

Bulk concentration in batch recycle mode (kilogram per cubic meter)

C * :

Non-dimensional concentration

C 0 :

Initial bulk concentration (kilogram per cubic meter)

C b :

Bulk concentration in batch mode (kilogram per cubic meter)

C g :

Gel concentration (kilogram per cubic meter)

C g * :

Non-dimensional gel layer concentration

C m :

Mean concentration in the boundary layer (kilogram per cubic meter)

C m * :

Non-dimensional mean concentration

C p :

Permeate concentration (kilogram per cubic meter)

D :

Diffusivity of solute (square meter per second)

D 0 :

Diffusivity at the reference temperature T 0 (square meter per second)

h :

Half height of channel (meter)

h 0 :

Initial channel thickness (meter)

H b :

Gel layer thickness in batch mode (meter)

H t :

Thickness of gel layer in total recycle mode (meter)

k :

Mass transfer coefficient (meter per second)

m :

Geometric factor in Eq. 42

n :

Exponent in viscosity–temperature relation \( \mu\;\alpha \frac{1}{{{T^n}}} \)

P ew :

Non-dimensional flux

Q :

Volumetric flow rate (cubic meter per second)

r :

Radial coordinate (meter)

r * :

Non-dimensional radial coordinate (=r/R)

Re:

Reynolds number \( \left( {\frac{{\rho uh}}{\mu }} \right) \)

R gb :

Gel layer resistance defined by Eq. 36 (per meter)

R gt :

Gel layer resistance in total recycle mode (per meter)

R m :

Membrane hydraulic resistance (per meter)

Sc:

Schmidt number \( \left( {\frac{\mu }{{\rho D}}} \right) \)

Sh:

Sherwood number (kr/D 0 )

\( \overline{\mathrm{Sh}} \) :

Length averaged Sherwood number (Eq. 15)

T :

Temperature in absolute scale (kelvin)

t :

Time of operation (second)

T 0 :

Reference temperature (=298 K)

u :

Effective transverse velocity (meter per second) defined in Eq. 2

u 0 :

Initial linear velocity (meter per second)

V :

Retentate volume (cubic meter)

V 0 :

Feed volume in batch mode (cubic meter)

v :

y-component velocity (meter per second)

v w :

Permeate flux (cubic meter per square meter per second)

y :

y-coordinate direction (meter)

y * :

Non-dimensional y-coordinate (=y/h)

α :

Parameter in viscosity–temperature relation μ = μ 0 e αC

β :

Specific gel resistance in Eq. 26, meter per kg

δ :

Concentration boundary layer thickness (meter)

δ * :

Non-dimensional concentration boundary layer thickness

P :

Transmembrane pressure drop (pascal)

ε g :

Gel layer porosity

ξ :

Parameter in Eq. 27 (per square meter)

μ :

Viscosity (pascal-second)

μ 0 :

Reference bulk viscosity when concentration of suspended solids is zero (pascal-second)

μ m :

Viscosity corresponding to mean concentration C m in the boundary layer (pascal-second)

μ w :

Viscosity at the wall (pascal-second)

ρ f :

Density of feed (kilogram per cubic meter)

ρ g :

Gel layer density (kilogram per cubic meter)

ρ p :

Density of permeate (kilogram per cubic meter)

τ :

Non-dimensional time \( \left( {=\frac{tD }{{{h^2}}}} \right) \)

References

  • Bhattacharjee, S., Sharma, A., & Bhattacharya, P. K. (1996). A unified model for flux prediction during batch cell ultrafiltration. Journal of Membrane Science, 111, 243–258.

    Article  CAS  Google Scholar 

  • Bhattacharjee, S., Kim, A. S., & Elimelech, M. (1999). Concentration polarization of interacting solute particles in cross flow membrane filtration. Journal of Colloid Interface Science, 212, 81–99.

    Article  CAS  Google Scholar 

  • Bhattacharya, S., Dasgupta, S., & De, S. (2001). Effect of solution property variations in cross flow ultrafiltration: a generalized approach. Separation and Purification Technology, 24, 559–571.

    Article  CAS  Google Scholar 

  • Blatt, W. F., Dravid, A., Michaels, A. S., & Nelson, L. (1970). Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control techniques. In J. E. Flinn (Ed.), Membrane science & technology (pp. 47–75). New York: Plenum Press.

    Chapter  Google Scholar 

  • Bouchard, C. R., Carreau, P. J., Matsuuara, T., & Sourirajan, S. (1994). Modeling of ultrafiltration: prediction of concentration polarization effects. Journal of Membrane Science, 97, 215–229.

    Article  CAS  Google Scholar 

  • Bowen, W. R., & Williams, P. M. (2001). Prediction of the rate of cross-flow ultrafiltration of colloids with concentration-dependent diffusion coeffcient and viscosity-theory and experiment. Chemical Engineering Science, 56, 3083–3099.

    Article  Google Scholar 

  • Cassano, A., Conidi, C., Timpone, R., D’Avella, M., & Drioli, E. (2007). A membrane-based process for the clarification and the concentration of the cactus pear juice. Journal of Food Engineering, 80, 914–921.

    Article  CAS  Google Scholar 

  • Cheryan, M. (1998). Ultrafiltration and microfiltration handbook. Lancaster: Technomic Publishing Company.

    Google Scholar 

  • Das, C., & De, S. (2009). Steady state modeling for membrane separation of pretreated liming effluent under cross flow mode. Journal of Membrane Science, 338, 175–181.

    Article  CAS  Google Scholar 

  • De, S., & Bhattacharya, P. K. (1996). Flux prediction of black liquor in cross flow ultrafiltration using low and high rejecting membranes. Journal of Membrane Science, 109, 109–123.

    Article  CAS  Google Scholar 

  • De, S., & Bhattacharya, P. K. (1997a). Prediction of mass transfer coefficient with suction in the applications of reverse osmosis and ultrafiltration. Journal of Membrane Science, 128, 119–131.

    Article  CAS  Google Scholar 

  • De, S., & Bhattacharya, P. K. (1997b). Modeling of ultrafiltration process for a two component aqueous solution of low and high (gel-forming) molecular weight solute. Journal of Membrane Science, 136, 57–69.

    Article  CAS  Google Scholar 

  • De, S., & Bhattacharya, P. K. (1999). Mass transfer coefficient with suction including property variations in applications of cross-flow ultrafiltration. Separation and Purification Technology, 16, 61–73.

    Article  CAS  Google Scholar 

  • De, S., Bhattacharjee, S., Sharma, A., & Bhattacharya, P. K. (1997). Generalized integral and similarity solutions for concentration profiles for osmotic pressure controlled ultrafiltration. Journal of Membrane Science, 130, 99–121.

    Article  CAS  Google Scholar 

  • Denisov, G. A. (1999). Theory of concentration polarization in cross-flow ultrafiltration: gel-layer model and osmotic-pressure model. Journal of Membrane Science, 91, 173–187.

    Article  Google Scholar 

  • Field, R., & Aimar, P. (1993). Ideal limiting fluxes in ultrafiltration: comparison of various theoretical relationships. Journal of Membrane Science, 80, 107–115.

    Article  CAS  Google Scholar 

  • Ganguly, S., & Bhattacharya, P. K. (1994). Development of concentration profile and prediction of flux for ultrafiltration in a radial cross-flow cell. Journal of Membrane Science, 97, 185–198.

    Article  CAS  Google Scholar 

  • Gekas, V., & Hallstrom, B. (1987). Mass transfer in the membrane concentration polarization layer under turbulent cross flow. I. Critical literature review and adaptation of existing Sherwood correlations to membrane operations. Journal of Membrane Science, 30, 153–170.

    Article  CAS  Google Scholar 

  • Gill, W. N., Wiley, D. E., Fell, C. J. D., & Fane, A. G. (1988). Effect of viscosity on concentration polarization in ultrafiltration. AIChE Journal, 34, 1563–1567.

    Article  CAS  Google Scholar 

  • Girard, B., & Fukumoto, L. R. (2000). Membrane processing of fruit juices and beverages: a review. Critical Reviews in Food Science and Nutrition, 40, 91–157.

    Article  CAS  Google Scholar 

  • Incropera, F. P., & DeWitt, D. P. (1996). Fundamentals of heat and mass transfer. Singapore: Wiley.

    Google Scholar 

  • Johnston, S. T., & Deen, W. M. (1999). Hindered convection of proteins in agarose gels. Journal of Membrane Science, 153, 271–279.

    Article  CAS  Google Scholar 

  • Kleinstreuer, C., & Paller, M. S. (1983). Laminar dilute suspension flows in plate and frame ultrafiltration units. AIChE Journal, 29, 533–539.

    Article  Google Scholar 

  • Kozinski, A. A., & Lightfoot, E. N. (1971). Ultrafiltration of proteins in stagnation flow. AIChE Journal, 17, 81–85.

    Article  CAS  Google Scholar 

  • Madireddi, K., Babcock, R. B., Levine, B., Kim, J. H., & Stenstrom, M. K. (1999). An unsteady-state model to predict concentration polarization in commercial spiral wound membranes. Journal of Membrane Science, 157, 13–34.

    Article  CAS  Google Scholar 

  • Minikanti, V. S., Dasgupta, S., & De, S. (1999). Prediction of mass transfer coefficient with suction for turbulent flow in cross flow ultrafiltration. Journal of Membrane Science, 157, 227–239.

    Article  Google Scholar 

  • Mohammad, A. W., Ng, C. Y., Lim, Y. P., & Ng, G. H. (2012). Ultrafiltration in food processing industry: review on application, membrane fouling and fouling control. Food and Bioprocess Technology, 5, 1143–1156.

    Article  Google Scholar 

  • Mondal, S., Cassano, A., Tasselli, F., & De, S. (2011a). A generalized model for clarification of fruit juice during ultrafiltration under total recycle and batch mode. Journal of Membrane Science, 366, 295–303.

    Article  CAS  Google Scholar 

  • Mondal, S., Rai, C., & De, S. (2011b). Identification of fouling mechanism during ultrafiltration of stevia extract. Food and Bioprocess Technology. doi:10.1007/s11947-011-0754-9.

  • Mondal, S., Chhaya, & De, S. (2012a). Prediction of ultrafiltration performance during clarification of stevia extract. Journal of Membrane Science, 396, 138–148.

    Article  CAS  Google Scholar 

  • Mondal, S., Chhaya, & De, S. (2012b). Modeling of cross flow ultrafiltration of Stevia extract in a rectangular cell. Journal of Food Engineering, 112, 326–337.

    Article  Google Scholar 

  • Opong, W. S., & Zydney, A. L. (1991). Diffusive and convective protein transport through asymmetric membranes. AIChE Journal, 37, 1497–1510.

    Article  CAS  Google Scholar 

  • Porter, M. C. (2005). Handbook of industrial membrane technology. New Delhi: Crest Publishing House.

    Google Scholar 

  • Prabhavathy, C., & De, S. (2011). Modeling and transport parameters during nanofiltration of degreasing effluent from a tannery. Asia Pacific Journal of Chemical Engineering, 6, 101–109.

    Article  CAS  Google Scholar 

  • Probstein, R. F., Shen, J. S., & Leung, W. F. (1978). Ultrafiltration of macromolecular solutions at high polarization in laminar channel flow. Desalination, 24, 1–16.

    Article  CAS  Google Scholar 

  • Rai, P., Majumdar, G. C., Sharma, G., DasGupta, S., & De, S. (2006). Effect of various cutoff membranes on permeate flux and quality during filtration of mosambi (Citrus sinensis L.) Osbeck juice. Food and Bioproducts Processing, 84, 213–219.

    Article  CAS  Google Scholar 

  • Rai, C., Rai, P., Majumdar, G. C., De, S., & Dasgupta, S. (2010). Mechanism of permeate flux decline during microfiltration of watermelon (Citrullus lanatus) juice. Food and Bioprocess Technology, 3, 545–553.

    Article  Google Scholar 

  • Sablani, S. S., Goosen, M. F. A., Belushi, R. A., & Wilf, M. (2001). Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination, 141, 269–289.

    Article  CAS  Google Scholar 

  • Sarkar, B., Dasgupta, S., & De, S. (2008). Cross-flow electro-ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice. Journal of Food Engineering, 89, 241–245.

    Article  Google Scholar 

  • Shen, J. J. S., & Probstein, R. F. (1977). On the prediction of limiting flux in laminar ultrafiltration of macromolecular solutions. Industrial & Engineering Chemistry Fundamentals, 16, 459–465.

    Article  CAS  Google Scholar 

  • Sherwood, T. K., Brian, P. L. T., Fisher, R. E., & Dresner, L. (1965). Salt concentration at phase boundaries in desalination by reverse osmosis. Industrial & Engineering Chemistry Fundamentals, 4, 113–118.

    Article  CAS  Google Scholar 

  • Thomas, R. L., Gaddis, J. L., Westtfall, P. H., Titus, T. C., & Ellis, N. D. (1987). Optimization of apple juice production by single pass metallic membrane ultrafiltration. Journal of Food Science, 52, 1263–1266.

    Article  Google Scholar 

  • Trettin, D.R., & Doshi, M.R. (1981). Pressure independent ultrafiltration—is it gel limited or osmotic pressure limited? In A. E Turbak (Ed.), Synthetic membranes, Vol II: hyper and ultrafiltration uses, ACS Symp. Ser. No. 154.

  • van Den Berg, G. B., Racz, I. G., & Smolders, C. A. (1989). Mass transfer coefficients in cross flow ultrafiltration. Journal of Membrane Science, 47, 25–51.

    Article  Google Scholar 

  • Wang, K. Y., & Chung, T. S. (2006). Polybenzimidazole nanofiltration hollow fiber for cephalexin separation. AIChE Journal, 52, 1363–1377.

    Article  CAS  Google Scholar 

  • Zydney, A. L. (1997). Stagnant film model for concentration polarization in membrane systems. Journal of Membrane Science, 130, 275–281.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirshendu De.

Appendices

Appendix A

The derivatives, \( \frac{{\partial {C^{*}}}}{{\partial {r^{*}}}} \), \( \frac{{\partial {C^{*}}}}{{\partial {y^{*}}}} \) and \( \frac{{{\partial^2}{C^{*}}}}{{\partial {y^{*}}^2}} \) in Eq. 8 are evaluated using Eq. 10. These partial derivatives are inserted in Eq. 8 and after simplification the following equation is obtained,

$$ \frac{A}{{{r^{*}}}}\left( {\frac{{{y^{*2 }}}}{{{\delta^{*2 }}}}-\frac{{{y^{*3 }}}}{{{\delta^{*3 }}}}} \right)\frac{{d{\delta^{*}}}}{{d{r^{*}}}}-P{e_w}\left( {\frac{{{y^{*}}}}{{{\delta^{*2 }}}}-\frac{1}{{{\delta^{*}}}}} \right)=\frac{1}{{{\delta^{*2 }}}} $$
(A.1)

Taking the zeroth moment of above equation by multiplying both sides by dy * and integrating across the boundary layer thickness from 0 to δ *, the following equation is obtained.

$$ \frac{A}{{{r^{*}}}}\left( {\frac{{d{\delta^{*}}}}{{d{r^{*}}}}} \right)\int\limits_0^{{{\delta^{*}}}} {\left( {\frac{{{y^{*2 }}}}{{{\delta^{*2 }}}}-\frac{{{y^{*3 }}}}{{{\delta^{*3 }}}}} \right)} d{y^{*}}-{P_{ew }}\int\limits_0^{{{\delta^{*}}}} {\left( {\frac{{{y^{*}}}}{{{\delta^{*2 }}}}-\frac{1}{{{\delta^{*}}}}} \right)} d{y^{*}}=\frac{1}{{{\delta^{*2 }}}}\int\limits_0^{{{\delta^{*}}}} {d{y^{*}}} $$
(A.2)

On solving the above integral the final equation is arrived

$$ \frac{A}{12}\frac{{{\delta^{*2 }}}}{{{r^{*}}}}\left( {\frac{{d{\delta^{*}}}}{{d{r^{*}}}}} \right)+\frac{{{P_{ew }}{\delta^{*}}}}{2}=1 $$
(A.3)

Substituting \( \frac{{\partial {C^{*}}}}{{\partial {y^{*}}}} \) from Eq. 10 in Eq. 8c, the following expression is obtained.

$$ {P_{ew }}{\delta^{*}}=2\left( {\frac{{C_g^{*}-1}}{{C_g^{*}}}} \right) $$
(A.4)

Replacing this value of P ew δ * in Eq. A.3, results to the following governing equation of concentration boundary layer thickness,

$$ \frac{A}{12}\frac{{{\delta^{*2 }}}}{{{r^{*}}}}\left( {\frac{{d{\delta^{*}}}}{{d{r^{*}}}}} \right)=\frac{1}{{C_g^{*}}} $$
(A.5)

Integration of the above equation leads to the profile of concentration boundary layer thickness with r * as,

$$ {\delta^{*}}={{\left( {\frac{18 }{{AC_g^{*}}}} \right)}^{1/3 }}{r^{*2/3 }} $$
(A.6)

Appendix B

The non-dimensional solute balance equation within concentration boundary layer can be written as,

$$ \mathop{{\frac{{\partial {C^{*}}}}{{\partial \tau }}}}\limits_{{\left( {{T_1}} \right)}}+\mathop{{A\frac{{{y^{*}}}}{{{r^{*}}}}\frac{{\partial {C^{*}}}}{{\partial {r^{*}}}}}}\limits_{{\left( {{T_2}} \right)}}-\mathop{{{P_{ew }}\frac{{\partial {C^{*}}}}{{\partial {y^{*}}}}}}\limits_{{\left( {{T_3}} \right)}}=\mathop{{\frac{{{\partial^2}{C^{*}}}}{{\partial {y^{*}}^2}}}}\limits_{{\left( {{T_4}} \right)}} $$
(B.1)

where, the non-dimensional time is defined as, τ = tD/h 2. Next, an order of magnitude analysis of Eq. B.1 is carried out term wise. O(x *) is 1; order of y is same as that of thickness of concentration boundary layer, \( \delta \approx \frac{D}{k}=\frac{{{10^{-11 }}}}{{{10^{-6 }}}}={10^{-5 }} \). Thus, \( \mathrm{O}\left( {\frac{{{y^{*}}}}{{{r^{*}}}}} \right) \) is \( \frac{{{{{{10^{-5 }}}} \left/ {{{10^{-3 }}}} \right.}}}{{{{{{10^{-1 }}}} \left/ {{{10^{-1 }}}} \right.}}}={10^{-2 }} \). O(A) is \( \frac{{{u_0}{h^2}}}{DR }=\frac{{1\times {10^{-6 }}}}{{{10^{-11 }}\times {10^{-1 }}}}={10^6} \). O(Pe w ) is \( \frac{{{v_w}h}}{R}=\frac{{{10^{-6 }}\times {10^{-3 }}}}{{{10^{-11 }}}}={10^2} \). Therefore, order of the terms, T 2, T 3, and T 4 is 104. Thus, it may be noted that T 1 has significant magnitude compared to other three terms up to a time of operation of 100 s. Beyond 100 s, it is reduced in order of magnitude. Hence, comparing the full operation time in this experiment (360 min), T 1 is small enough to be ignored. Therefore, we can take recourse to a quasi-steady-state analysis for estimation of concentration boundary layer profile. The governing equation of solute mass balance is same as Eq. 8. The concentration profile can be approximated as described in Appendix A, with the following boundary conditions,

$$ \mathrm{at}\quad {y^{*}}={\delta^{*}},\quad C={C_b};\quad {C^{*}}=C_b^{*} $$
(B.2)

The concentration profile within the boundary layer now becomes,

$$ {C^{*}}=C_g^{*}-2\left( {C_g^{*}-C_b^{*}} \right)\left( {\frac{{{y^{*}}}}{{{\delta^{*}}}}} \right)+\left( {C_g^{*}-C_b^{*}} \right){{\left( {\frac{{{y^{*}}}}{{{\delta^{*}}}}} \right)}^2} $$
(B.3)

The mean concentration within boundary layer is (Mondal et al. 2011a),

$$ C_m^{*}=\frac{1}{3}\left( {C_g^{*}+2C_b^{*}} \right) $$
(B.4)

and,

$$ \frac{{{\mu_m}}}{{{\mu_w}}}={e^{{-\frac{2}{3}\alpha {C_0}\left( {C_g^{*}-C_b^{*}} \right)}}} $$
(B.5)

The Sherwood number relation is modified as,

$$ \overline{\mathrm{Sh}}=1.65{{\left( {\operatorname{Re}\cdot \mathrm{Sc}\frac{h}{R}} \right)}^{{\frac{1}{3}}}}{{\left( {{e^{{-\frac{2}{3}\alpha {C_0}\left( {C_g^{*}-C_b^{*}} \right)}}}} \right)}^{0.14 }}{{\left( {\frac{{C_g^{*}}}{{C_b^{*}}}} \right)}^{{\frac{1}{3}}}} $$
(B.6)

Including temperature correction, the average Sherwood number is,

$$ \overline{\mathrm{Sh}}=1.65{{\left( {\operatorname{Re}\cdot \mathrm{Sc}\frac{h}{R}} \right)}^{{\frac{1}{3}}}}{{\left( {{e^{{-\frac{2}{3}\alpha {C_0}\left( {C_g^{*}-C_b^{*}} \right)}}}} \right)}^{0.14 }}{{\left( {\frac{{{T_0}}}{T}} \right)}^{{\frac{n+1 }{3}}}}{{\left( {\frac{{C_g^{*}}}{{C_b^{*}}}} \right)}^{{\frac{1}{3}}}} $$
(B.7)

Average dimensionless permeate flux becomes,

$$ \overline{{{P_{ew }}}}=1.65{{\left( {\operatorname{Re}\cdot \mathrm{Sc}\frac{h}{R}} \right)}^{{\frac{1}{3}}}}{{\left( {{e^{{-\frac{2}{3}\alpha {C_0}\left( {C_g^{*}-C_b^{*}} \right)}}}} \right)}^{0.14 }}{{\left( {\frac{{{T_0}}}{T}} \right)}^{{\frac{n+1 }{3}}}}\left[ {{{{\left( {\frac{{C_g^{*}}}{{C_b^{*}}}} \right)}}^{{\frac{1}{3}}}}-{{{\left( {\frac{{C_g^{*}}}{{C_b^{*}}}} \right)}}^{{-\frac{2}{3}}}}} \right] $$
(B.8)

For \( \frac{{C_g^{*}}}{{C_b^{*}}} < <20 \), \( {{\left( {\frac{{C_g^{*}}}{{C_b^{*}}}} \right)}^{{\frac{1}{3}}}}-{{\left( {\frac{{C_g^{*}}}{{C_b^{*}}}} \right)}^{-2/3 }} \), is reduced to \( \ln \left( {\frac{{C_g^{*}}}{{C_b^{*}}}} \right) \). Under this condition, the final expression of length averaged permeate flux is presented in Eq. 35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S., Cassano, A. & De, S. Modeling of Gel Layer-Controlled Fruit Juice Microfiltration in a Radial Cross Flow Cell. Food Bioprocess Technol 7, 355–370 (2014). https://doi.org/10.1007/s11947-013-1077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1077-9

Keywords

Navigation