Skip to main content
Log in

Spray-Drying Microencapsulation of Polyphenol Bioactives: A Comparative Study Using Different Natural Fibre Polymers as Encapsulants

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This research explores the spray-drying microencapsulation of polyphenols (PPs), quercetin and vanillin, using four different fibre polymers as encapsulants (sodium alginate, methyl β-cyclodextrin (MβCD), hydroxypropylmethyl cellulose (HPMC) and inulin). The microstructure, physico-chemical properties, PP content and reconstitution properties in water of the spray-dried powders were systematically evaluated and compared. Techniques used for powder characterisation were scanning electron microscopy, N2 physisorption, Fourier transform infrared (FT-IR) spectroscopy and water activity measurements. High-performance liquid chromatography and viscosity measurements were used to characterise the solutions obtained by reconstitution of the spray-dried powders in methanol or water, respectively. Results show that the type of encapsulant strongly influenced powder morphology, powder surface area and encapsulation efficiency of PPs. Powders prepared using sodium alginate and MβCD possessed more spherical particle shape, smaller average particle size and higher specific surface area than those using HPMC or inulin as encapsulants. For each encapsulant, higher encapsulation efficiencies were achieved for vanillin (37–53 %) than quercetin (9–19 %). Encapsulation efficiencies were inulin > MβCD > HPMC > sodium alginate for vanillin-containing powders. Inulin, MβCD and sodium alginate all gave similar encapsulation efficiencies for quercetin-containing powders. All powders possessed low water activity and excellent dissolution properties in water. Therefore, spray-drying microencapsulation using natural fibre encapsulants is a feasible approach for delivering the dual health benefits of PPs and dietary fibre to consumers. Spray-drying yields a product in a convenient powder form, which can be reconstituted in water or other beverages for direct consumption or used as a functional additive in solid food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arts, I. C. W., & Hollman, P. C. H. (2005). Polyphenols and disease risk in epidemiologic studies. The American Journal of Clinical Nutrition, 81(1), 317S–325S.

    CAS  Google Scholar 

  • Ashady, R. (1993). Microcapsules for food. Journal of Microencapsulation, 10, 413–435.

    Article  Google Scholar 

  • Bakowska, A. M., Kucharska, A. Z., & Oszmianski, J. (2003). The effects of heating, UV irradiation and storage on stability of anthocyanin-polyphenol copigment complex. Food Chemistry, 81, 349–355.

    Article  CAS  Google Scholar 

  • Bakowska-Barczak, A. M., & Kolodziejczyk, P. P. (2010). Black currant polyphenols: Their storage stability and microencapsulation. Industrial Crops and Products. doi:10.1016/j.indcrop. 2010.10.002.

  • Banerjee, S., & Bhattacharya, S. (2012). Food gels: Gelling process and new applications. Critical Reviews in Food Science and Nutrition, 52(4), 334–346.

    Article  CAS  Google Scholar 

  • Binoy, J., Joe, I. H., & Jayakumar, V. S. (2005). Changes in the vibrational spectral modes by the nonbonded interactions in the NLO crystal vanillin. Journal of Raman Spectroscopy, 36, 1091–1100.

    Article  CAS  Google Scholar 

  • Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317–333.

    Article  CAS  Google Scholar 

  • Buchner, N., Krumbein, A., Rohn, S., & Kroh, L. W. (2006). Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry, 20, 3229–3235.

    Article  CAS  Google Scholar 

  • Caykara, T., Demirci, S., Eroglu, M. S., & Guven, O. (2005). Poly(ethylene oxide) and its blends with sodium alginate. Polymer, 46, 10750–10757.

    Article  CAS  Google Scholar 

  • Chew, N. Y., Bagster, D. F., & Chan, H. K. (2000). Effect of particle size, air flow and inhaler device on the aerosolisation of disodium cromoglycate powders. International Journal of Pharmaceutics, 206, 75–83.

    Article  CAS  Google Scholar 

  • Condon, J. B. (2006). Surface area and porosity determinations by physisorption: Measurements and theory (1st ed.). Boston: Elsevier.

    Google Scholar 

  • Daniher, D. I., & Zhu, J. (2008). Dry powder platform for pulmonary drug delivery. Particuology, 6, 225–238.

    Article  CAS  Google Scholar 

  • Deshmukh, V. N., Sakarkar, D. M., & Wakade, R. B. (2009). Formulation and evaluation of controlled release alginate microspheres using locust bean gum. Journal of Pharmacy Research, 2(3), 458–461.

    CAS  Google Scholar 

  • Di Noto, V., Munchow, V., Vittadello, M., Collet, J. C., & Lavina, S. (2002). Synthesis and characterization of lithium and magnesium complexes based on [EDTA][PEG400]2 and [EDTA]3[PEG400]7. Macromolecular Chemistry and Physics, 203, 1211–1227.

    Article  Google Scholar 

  • Dzondo-Gadet, M., Nzikou, J. M., Etoumongob, A., Linder, M., & Desobry, S. (2005). Encapsulation and storage of safou pulp oil in 6DE maltodextrins. Process Biochemistry, 40, 265–271.

    Article  CAS  Google Scholar 

  • Ersus, S., & Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering, 80, 805–812.

    Article  CAS  Google Scholar 

  • Favaro-Trindade, C. S., Santana, A. S., Monterrey-Quintero, E. S., Trindade, M. A., & Netto, F. M. (2010). The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids, 24, 336–340.

    Article  CAS  Google Scholar 

  • Gasperini, G., Fusari, E., Bella, L. D., & Bondioli, P. (2007). Classification of feeding fats by FT-IR spectroscopy. European Journal of Lipid Science and Technology, 109, 673–681.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107–1121.

    Article  CAS  Google Scholar 

  • Gharsallaoui, A., Saurel, R., Chambin, O., & Voilley, A. (2011). Pea (Pisum sativum, L.) protein isolate stabilized emulsions: A novel system for microencapsulation of lipophilic ingredients by spray drying. doi:10.1007/s11947-010-0497-z.

  • Gibbs, B. F., Kermasha, S., Alli, I., & Mulligan, C. N. (1999). Encapsulation in the food industry: A review. International Journal of Food Sciences and Nutrition, 50, 213–224.

    Article  CAS  Google Scholar 

  • Heidebach, T., Főrst, P., & Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocolloids, 23, 1670–1677.

    Article  CAS  Google Scholar 

  • Hendrickson, H. P., Kaufman, A. D., & Lunte, C. E. (1994). Electrochemistry of catechol-containing flavonoids. Journal of Pharmaceutical and Biomedical Analysis, 12, 325–334.

    Article  CAS  Google Scholar 

  • Hendrickson, H. P., Sahafayen, M., Bell, M. A., Kaufman, A. D., Hadwiger, M. E., & Lunte, C. E. (1994). Relationship of flavonoid oxidation potential and effect on rat hepatic microsomal metabolism of benzene and phenol. Journal of Pharmaceutical and Biomedical Analysis, 12, 335–341.

    Article  CAS  Google Scholar 

  • Ishikawa, T., Watanabe, Y., Takayama, K., Endo, H., & Matsumoto, M. (2000). Effect of hydroxypropylmethylcellulose (HPMC) on the release profiles and bioavailability of a poorly water-soluble drug from tablets prepared using macrogol and HPMC. International Journal of Pharmaceutics, 202, 173–178.

    Article  CAS  Google Scholar 

  • Kacuráková, M., & Mathlouthi, M. (1996). FTIR and laser-Raman spectra of oligosaccharides in water: Characterization of the glycosidic bond. Carbohydrate Research, 284, 145–157.

    Article  Google Scholar 

  • Kacuráková, M., Capek, P., Sasinková, V., Wellner, N., & Ebringerová, A. (2000). FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydrate Polymers, 43, 195–203.

    Article  Google Scholar 

  • Lauren, D. R., Smith, W. A., Adaim, A., Cooney, J. M., Wibisono, R., Jensen, D. J., et al. (2009). Chemical composition and in vitro anti-inflammatory activity of apple phenolic extracts and of their sub-fractions. International Journal of Food Sciences and Nutrition, 60(S7), 188–205.

    Article  CAS  Google Scholar 

  • Lencki, R., Neufeld, R., & Spinney, T (inventor). (1989). Method of producing microspheres. US patent 4 822 534. April 18.

  • Lim, L. H., Tan, A., Simovic, S., & Prestidge, C. A. (2011). Silica-lipid hybrid microcapsules: Influence of lipid and emulsifier type on in vitro performance. International Journal of Pharmaceutics, 409, 297–306.

    Article  CAS  Google Scholar 

  • Lin, Q. L., Wang, J., Qin, D., & Bergenståhl, B. (2007). Influence of amphiphilic structures on the stability of polyphenols with different hydrophobicity. Science in China Series B: Chemistry, 50(1), 121–126.

    Article  CAS  Google Scholar 

  • Liu, J., Liu, K., Zhao, L.-B., Zeng, Q., Guo, Z.-X., & Zhao, X.-Z. (2007). Controlled-release of materials in calcium alginate microbeads prepared by microfluidic device. Bioinformatics and Biomedical Engineering, 6–8, 1241–1243.

    Google Scholar 

  • Luthria, D. L. (2006). Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. Journal of the Science of Food and Agriculture, 86, 2266–2272.

    Article  CAS  Google Scholar 

  • Malmo, C., La Storia, A., & Mauriello, G. (2011). Microencapsulation of Lactobacillus reuteri DSM 17938 cells coated in alginate beads with chitosan by spray drying to use as a probiotic cell in a chocolate soufflé. doi:10.1007/s11947-011-0755-8.

  • Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine, 20, 933–956.

    Article  CAS  Google Scholar 

  • Roberfroid, M., & Slavin, J. (2000). Nondigestible oligosaccharides. Critical Reviews in Food Science and Nutrition, 40(6), 461–480.

    Article  CAS  Google Scholar 

  • Saenz, C., Tapia, S., Chavez, J., & Robert, P. (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry, 114(2), 616–622.

    Article  CAS  Google Scholar 

  • Sahoo, N. G., Abbas, A., Judeh, Z., Li, C. M., & Yuen, K. H. (2009). Solubility enhancement of a poorly water-soluble anti-Malarial drug: Experimental design and use of a modified multifluid nozzle pilot spray drier. Journal of Pharmaceutical Sciences, 98(1), 281–296.

    Article  CAS  Google Scholar 

  • Scott, K. P., Duncan, S. H., & Flint, H. J. (2008). Dietary fibre and the gut microbiota. Nutrition Bulletin, 33, 201–211.

    Article  Google Scholar 

  • Slavin, J., & Green, H. (2007). Dietary fibre and satiety. Nutrition Bulletin, 32, S32–S42.

    Article  Google Scholar 

  • Stevenson, D., Wibisono, R., Jensen, D., Stanley, R., & Cooney, J. (2006). Direct acylation of flavonoid glycosides with phenolic acids catalysed by Candida antarctica lipase B (Novozym 435®). Enzyme and Microbial Technology, 39, 1236–1241.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Sivam, A. S., Cooney, J., Zhou, J., Perera, C. O., & Waterhouse, G. I. N. (2011). Effects of added fruit polyphenols and pectin on the properties of finished breads revealed by HPLC/LC-MS and size-exclusion HPLC. Food Research International, 44(9), 3047–3056.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Zhou, J., Miskelly, G. M., Wibisono, R., & Wadhwa, S. S. (2011). Stability of encapsulated olive oil in the presence of caffeic acid. Food Chemistry, 126(3), 1049–1056.

    Article  CAS  Google Scholar 

  • Sun-Waterhouse, D., Penin-Peyta, L., Wadhwa, S. S., & Waterhouse, G. I. N. (2011). Storage stability of phenolic-fortified avocado oil encapsulated using different polymer formulations and co-extrusion technology. Food and Bioprocess Technology. doi:10.1007/s11947-011-0591-x.

  • Tabor, D. (1977). Surface forces and surface interactions. Journal of Colloid and Interface Science, 58, 2–13.

    Article  CAS  Google Scholar 

  • Vazequez, M. J., Casalderrey, M., Duro, R., Gomez-Amoza, J.-L., Martinez-Pecheco, R., Souto, R., et al. (1996). Atenolol release from hydrophilic matrix tablets with hydroxypropylmethylcellulose (HPMC) mixtures as gelling agent: Effects of the viscosity of the HPMC mixture. European Journal of Pharmaceutical Sciences, 4, 39–48.

    Article  Google Scholar 

  • Wang, J., & Somasundaran, P. (2007). Study of galactomannose interaction with solids using AFM, IR and allied techniques. Journal of Colloid and Interface Science, 309, 373–383.

    Article  CAS  Google Scholar 

  • Wang, X., Wang, Y.-W., & Huang, Q. (2009). Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. In Q. Huang, P. Given, & M. Qian (Eds.), Micro/nanoencapsulation of active food ingredients (pp. 198–212). Washington: US: American Chemical Society. ACS Symposium Series, Chapter 13, Vol. 1007.

    Chapter  Google Scholar 

  • Whistler, R. L., & BeMiller, J. N. (1997). Carbohydrate chemistry for food scientists (pp. 203–210). St. Paul: The American Association of Cereal Chemists.

    Google Scholar 

  • Wood, F. W., & Goff, T. C. (1973). The determination of the effective shear rate in the Brabender Viscograph and in other systems of complex geometry. Starch, 25(3), 89–91.

    Article  CAS  Google Scholar 

  • Wu, T.-H., Yen, F.-H., Lin, L.-T., Tsai, T.-R., Lin, C.-C., & Cham, T.-M. (2008). Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. International Journal of Pharmaceutics, 346, 160–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge research funding from The University of Auckland and Plant and Food Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey I. N. Waterhouse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun-Waterhouse, D., Wadhwa, S.S. & Waterhouse, G.I.N. Spray-Drying Microencapsulation of Polyphenol Bioactives: A Comparative Study Using Different Natural Fibre Polymers as Encapsulants. Food Bioprocess Technol 6, 2376–2388 (2013). https://doi.org/10.1007/s11947-012-0946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0946-y

Keywords

Navigation