Skip to main content

Advertisement

Log in

The Effects of Vital Wheat Gluten and Transglutaminase on the Thermomechanical and Dynamic Rheological Properties of Buckwheat Dough

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The improvement of the processing properties of gluten-free cereals is a challenging issue for cereal technologists. Vital wheat gluten (VWG), transglutaminase (TGase), or combinations of the two have been successfully used to improve the processing properties of food materials. In this study, a Mixolab system and a rheometer were used to investigate the effects of TGase on the thermomechanical and dynamic rheological properties of buckwheat flour dough (BF dough) and a buckwheat flour dough containing 15% VWG (BF-VWG dough). The results indicated that the addition of 1.0% TGase decreased the water absorption and significantly increased the stability, storage modulus (G′), and complex modulus (|G*|) of the BF dough. The presence of 15% VWG had a synergistic effect, enhancing the effectiveness of the TGase in improving the thermomechanical and dynamic rheological properties of the BF-VWG dough. Quantification of the free amino groups showed that the amino groups were more effectively bonded in the BF-VWG dough than in the BF dough when the TGase level exceeded 1.0%. Confocal laser scanning microscopy (CLSM) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis confirmed that the TGase promoted the formation of protein complexes. These data indicate that the combination of VWG and TGase can be used to improve the properties of buckwheat flour for buckwheat-based food production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.). St. Paul, MN: The Association.

    Google Scholar 

  • Ahn, H., Kim, J., & Ng, P. (2005). Functional and thermal properties of wheat, barley, and soy flours and their blends treated with a microbial transglutaminase. Journal of Food Science, 70, c380–c386.

    Article  CAS  Google Scholar 

  • Autio, K., Kruus, K., Knaapila, A., Gerber, N., Flander, L., & Buchert, J. (2005). Kinetics of transglutaminase-induced cross-linking of wheat proteins in dough. Journal of Agricultural and Food Chemistry, 53, 1039–1045.

    Article  CAS  Google Scholar 

  • Babiker, E. E. (2000). Effect of transglutaminase treatment on the functional properties of native and chymotrypsin-digested soy protein. Food Chemistry, 70, 139–145.

    Article  CAS  Google Scholar 

  • Barcew-Wiszniewska, B., Samochowiec, L., & Rózewicka, L. (1995). Extractum Fagopyri reduces atherosclerosis in high-fat diet fed rabbits. Die Pharmazie, 50, 560.

    Google Scholar 

  • Basman, A., Köksel, H., & Ng, P. (2002a). Effects of transglutaminase on SDS-PAGE patterns of wheat, soy, and barley proteins and their blends. Journal of Food Science, 67, 2654–2658.

    Article  CAS  Google Scholar 

  • Basman, A., Köksel, H., & Ng, P. K. (2002b). Effects of increasing levels of transglutaminase on the rheological properties and bread quality characteristics of two wheat flours. European Food Research and Technology, 215, 419–424.

    Article  CAS  Google Scholar 

  • Block, R. J., & Bolling, D. (1947). The amino acid composition of proteins and foods. CC Thomas, Springfield, IL.

  • Bonet, A., Blaszczak, W., & Rosell, C. M. (2006). Formation of homopolymers and heteropolymers between wheat flour and several protein sources by transglutaminase-catalyzed cross-linking. Cereal Chemistry, 83, 655–662.

    Article  CAS  Google Scholar 

  • Brites, C., Trigo, M. J., Santos, C., Collar, C., & Rosell, C. M. (2010). Maize-based gluten-free bread: influence of processing parameters on sensory and instrumental quality. Food and Bioprocess Technology, 3, 707–715.

    Article  Google Scholar 

  • Choi, S. M., Mine, Y., & Ma, C. Y. (2006). Characterization of heat-induced aggregates of globulin from common buckwheat (Fagopyrum esculentum Moench). International Journal of Biological Macromolecules, 39, 201–209.

    Article  CAS  Google Scholar 

  • Codina, G. G., Bordei, D., & Paslaru, V. (2008). The effects of different doses of gluten on rheological behaviour of dough and bread quality. Romanian Biotechnology Letters, 13, 37–42.

    CAS  Google Scholar 

  • Debet, M. R., & Gidley, M. J. (2006). Three classes of starch granule swelling: influence of surface proteins and lipids. Carbohydrate Polymers, 64, 452–465.

    Article  CAS  Google Scholar 

  • Dinnella, C., Gargaro, M. T., Rossano, R., & Monteleone, E. (2002). Spectrophotometric assay using o-phtaldialdehyde for the determination of transglutaminase activity on casein. Food Chemistry, 78, 363–368.

    Article  CAS  Google Scholar 

  • Folk, J., & Finlayson, J. (1977). The-(−glutamyl) lysine crosslink and the catalytic role of transglutaminases. Advances in Protein Chemistry, 31, 1–133.

    Article  CAS  Google Scholar 

  • Gerrard, J. A. (2002). Protein-protein crosslinking in food: methods, consequences, applications. Trends in Food Science & Technology, 13, 391–399.

    Article  CAS  Google Scholar 

  • Gerrard, J., Fayle, S., Brown, P., Sutton, K., Simmons, L., & Rasiah, I. (2001). Effects of microbial transglutaminase on the wheat proteins of bread and croissant dough. Journal of Food Science, 66, 782–786.

    Article  CAS  Google Scholar 

  • Gujral, H. S., & Rosell, C. M. (2004). Functionality of rice flour modified with a microbial transglutaminase. Journal of Cereal Science, 39, 225–230.

    Article  CAS  Google Scholar 

  • Huang, W., Li, L., Wang, F., Wan, J., Tilley, M., Ren, C., & Wu, S. (2010). Effects of transglutaminase on the rheological and Mixolab thermomechanical characteristics of oat dough. Food Chemistry, 121, 934–939.

    Article  CAS  Google Scholar 

  • Kim, Y. S., Huang, W., Du, G., Pan, Z., & Chung, O. (2008). Effects of trehalose, transglutaminase, and gum on rheological, fermentation, and baking properties of frozen dough. Food Research International, 41, 903–908.

    Article  CAS  Google Scholar 

  • Köksel, H., Sivri, D., Ng, P., & Steffe, J. (2001). Effects of transglutaminase enzyme on fundamental rheological properties of sound and bug-damaged wheat flour doughs. Cereal chemistry, 78, 26–30.

    Article  Google Scholar 

  • Kreft, I., Fabjan, N., & Yasumoto, K. (2006). Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chemistry, 98, 508–512.

    Article  CAS  Google Scholar 

  • Krkoskova, B., & Mrazova, Z. (2005). Prophylactic components of buckwheat. Food Research International, 38, 561–568.

    Article  Google Scholar 

  • Larré, C., Denery-Papini, S., Popineau, Y., Deshayes, G., Desserme, C., & Lefebvre, J. (2000). Biochemical analysis and rheological properties of gluten modified by transglutaminase. Cereal chemistry, 77, 121–127.

    Article  Google Scholar 

  • Lodi, A., Tiziani, S., & Vodovotz, Y. (2007). Molecular changes in soy and wheat breads during storage as probed by nuclear magnetic resonance (NMR). Journal of Agricultural and Food Chemistry, 55, 5850–5857.

    Article  CAS  Google Scholar 

  • Marcoa, C., & Rosell, C. M. (2008). Effect of different protein isolates and transglutaminase on rice flour properties. Journal of Food Engineering, 84, 132–139.

    Article  Google Scholar 

  • Mattila, P., Pihlava, J., & Hellstr, m. J. (2005). Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. Journal of Agricultural and Food Chemistry, 53, 8290–8295.

    Article  CAS  Google Scholar 

  • Milisavljevic, M. D., Timotijevic, G. S., Radovic, S. R., Brkljacic, J. M., Konstantinovic, M. M., & Maksimovic, V. R. (2004). Vicilin-like storage globulin from buckwheat (Fagopyrum esculentum Moench) seeds. Journal of Agricultural and Food Chemistry, 52, 5258–5262.

    Article  CAS  Google Scholar 

  • Moore, M. M., Heinbockel, M., Dockery, P., Ulmer, H., & Arendt, E. K. (2006). Network formation in gluten-free bread with application of transglutaminase. Cereal chemistry, 83, 28–36.

    Article  CAS  Google Scholar 

  • Morishita, T., Yamaguchi, H., & Degi, K. (2007). The contribution of polyphenols to antioxidative activity in common buckwheat and tartary buckwheat grain. Plant production science, 10, 99–104.

    Article  CAS  Google Scholar 

  • Nelles, E., Dewar, J., Bason, M., & Taylor, J. (2000). Maize starch biphasic pasting curves. Journal of Cereal Science, 31, 287–294.

    Article  CAS  Google Scholar 

  • Ozturk, S., Kahraman, K., Tiftik, B., & Koksel, H. (2008). Predicting the cookie quality of flours by using Mixolab(R). European Food Research and Technology, 227, 1549–1554.

    Article  CAS  Google Scholar 

  • Payne, P. I., Nightingale, M. A., Krattiger, A. F., & Holt, L. M. (1987). The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. Journal of the Science of Food and Agriculture, 40, 51–65.

    Article  CAS  Google Scholar 

  • Pinterits, A., & Arntfield, S. D. (2008). Improvement of canola protein gelation properties through enzymatic modification with transglutaminase. LWT- Food Science and Technology, 41, 128–138.

    Article  CAS  Google Scholar 

  • Radovic, S. R., Maksimovic, V. R., & Varkonji Gasic, E. I. (1996). Characterization of buckwheat seed storage proteins. Journal of Agricultural and Food Chemistry, 44, 972–974.

    Article  CAS  Google Scholar 

  • Radovic, R., Maksimovic, R., Brkljacic, M., Gasic, I. E., & Savic, P. (1999). 2S albumin from buckwheat (Fagopyrum esculentum Moench) seeds. Journal of Agricultural and Food Chemistry, 47, 1467–1470.

    Article  CAS  Google Scholar 

  • Renzetti, S., Behr, J., Vogel, R., & Arendt, E. (2008a). Transglutaminase polymerisation of buckwheat (Fagopyrum esculentum Moench) proteins. Journal of Cereal Science, 48, 747–754.

    Article  CAS  Google Scholar 

  • Renzetti, S., Dal Bello, F., & Arendt, E. K. (2008b). Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. Journal of Cereal Science, 48, 33–45.

    Article  CAS  Google Scholar 

  • Salmenkallio-Marttila, M., Roininen, K., Autio, K., & Lahteenmaki, L. (2004). Effects of gluten and transglutaminase on microstructure, sensory characteristics and instrumental texture of oat bread. Agricultural and food science, 13, 138–150.

    Article  CAS  Google Scholar 

  • Sciarini, L. S., Ribotta, P. D., León, A. E., & Pérez, G. T. (2010). Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food and Bioprocess Technology, 3, 577–585.

    Article  Google Scholar 

  • Tanaka, K., Matsumoto, K., Akasawa, A., Nakajima, T., Nagasu, T., Iikura, Y., & Saito, H. (2000). Pepsin-resistant 16-kD buckwheat protein is associated with immediate hypersensitivity reaction in patients with buckwheat allergy. International Archives of Allergy and Immunology, 129, 49–56.

    Article  Google Scholar 

  • Tang, C. H., & Jiang, Y. (2007). Modulation of mechanical and surface hydrophobic properties of food protein films by transglutaminase treatment. Food Research International, 40, 504–509.

    Article  CAS  Google Scholar 

  • Tang, C. H., Chen, Z., Li, L., & Yang, X. Q. (2006). Effects of transglutaminase treatment on the thermal properties of soy protein isolates. Food Research International, 39, 704–711.

    Article  CAS  Google Scholar 

  • Torbica, A., Hadna ev, M., & Dapcevic, T. (2010). Rheological, textural and sensory properties of gluten-free bread formulations based on rice and buckwheat flour. Food Hydrocolloids, 24, 626–632.

    Article  CAS  Google Scholar 

  • Wang F, Huang W, Kim Y, Liu R, Tilley M (2011). Effects of transglutaminase on the rheological an 1 d noodlemaking characteristics of oat dough containing vital wheat gluten or egg albumin. Journal of Cereal Science, 1–7.

  • Wu, J., & Corke, H. (2005). Quality of dried white salted noodles affected by microbial transglutaminase. Journal of the Science of Food and Agriculture, 85, 2587–2594.

    Article  CAS  Google Scholar 

  • Yokoyama, K., Nio, N., & Kikuchi, Y. (2004). Properties and applications of microbial transglutaminase. Applied Microbiology and Biotechnology, 64, 447–454.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Basic Research Priorities Program of Ningxia province (Grant No. NZ10224) and the Science and Technology Research Program of Ningxia Regularly Higher-Learning Institutions (Grant No. [2010]297) and partly supported by the National Natural Science Foundation of the People’s Republic of China (No. 30972286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lite Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, L., Cheng, Y., Qiu, S. et al. The Effects of Vital Wheat Gluten and Transglutaminase on the Thermomechanical and Dynamic Rheological Properties of Buckwheat Dough. Food Bioprocess Technol 6, 561–569 (2013). https://doi.org/10.1007/s11947-011-0738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0738-9

Keywords

Navigation