Skip to main content
Log in

Selection of Glycolytically Inefficient Yeasts for Reducing the Alcohol Content of Wines from Hot Regions

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The selection of glycolytically inefficient yeasts is of interest for producing wines with less ethanol, especially when they can also improve their sensorial properties. The selection criteria used in the present study included low fermentative power and high production of secondary metabolites with a positive sensorial impact on red wine. Yeast strains were assayed at different must sugar concentrations and fermentation temperatures. Gas chromatograph with a flame ionisation detector was used to determine volatile glycolytic metabolites, and enzyme tests were employed to determine non-volatile compounds. Taking both laboratory and winery experimental results together, strain TP2A16 was found to show glycolytic inefficiency, reducing the mean ethanol content by 1% by volume in fermentations at 25 °C. From a sensorial point of view, this strain showed good production of glycerine and ethyl lactate. It also showed good production of acetaldehyde, which favours the production of stable pigments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amerine, M. A., & Ough, C. S. (1976). Análisis de Vinos y Mostos, Ed. Acribia, Zaragoza, Spain, p. 49

  • Arroyo-López, F. N., Pérez-Torrado, R., Querol, A., & Barrio, E. (2010). Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid. Food Microbiology, 27, 628–637.

    Article  Google Scholar 

  • Belisario-Sánchez, Y. Y., Taboada-Rodríguez, A., Marín-Iniesta, F., Iguaz-Gainza, A., & López-Gómez, A. (2011). Aroma recovery in wine dealcoholization by SCC distillation. Food and Bioprocess Technology. doi:10.1007/s11947-011-0574-y.

    Google Scholar 

  • Benito, S., Morata, A., Palomero, F., González, M. C., & Suárez-Lepe, J. A. (2011). Formation of vinylphenolic pyranoanthocyanins by Saccharomyces cerevisiae and Pichia guillermondii in red wines produced following different fermentation strategies. Food Chemistry, 124, 15–23.

    Article  CAS  Google Scholar 

  • Catarino, M., Mendes, A., Madeira, M., & Ferreira, A. (2006). Beer dealcoholization by reverse osmosis. Desalination, 200, 397–399.

    Article  CAS  Google Scholar 

  • CEEV (Comité Européen des Entreprises Vins) & COPA-COGECA. (2010). Wine in moderation.eu Art de Vivre. Retrieved March 2010, from http://www.wineinmoderation.eu/.

  • Cordero, R. (2007) Revisión bibliográfica de las levaduras genéticamente modificadas para reducir el alcohol en vinos. Departamento de Bioquímica y Biotecnología, Universitat Rovira i Virgili, Tarragona. Revista de enología ACE, 85

  • Cordova, A. C., Jackson, L. S., Berke-Schlessel, D. W., & Sumpio, B. E. (2005). The cardiovascular protective effect of red wine. Journal of the American College of Surgeons, 200, 428–439.

    Article  Google Scholar 

  • De Gaetano, G., & Cerletti, C. (2001). Wine and cardiovascular disease. Nutrition Metabolism and Cardiovascular Diseases, 11, 47–50.

    Google Scholar 

  • Diban, N., Athes, V., Bes, M., & Souchon, I. (2008). Ethanol and aroma compounds transfer study for partial dealcoholization of wine using membrane contactor. Journal of Membrane Science, 311, 136–146.

    Article  CAS  Google Scholar 

  • Gómez-Plaza, E., López-Nicolás, J. M., López-Roca, J. M., & Martínez-Cutillas, A. (1999). Dealcoholization of wine. Behaviour of the aroma components during the process. Food Science and Technology-Lebensmittel-Wissenschaft and Technologie, 32, 384–386.

    Google Scholar 

  • Hernández, E., Raventós, M., Auleda, J. M., & Ibarz, A. (2010). Freeze concentration of must in a pilot plant falling film cryoconcentrator. Innovative Food Science and Emerging Technologies, 11, 130–136.

    Article  Google Scholar 

  • IPCC. (2010). Intergovernmental Panel on Climatic Change. Retrieved from http://www.ipcc.ch/.

  • Kutyna, D. R., Varela, C., Henschke, P. A., Chambers, P. J., & Stanley, G. A. (2010). Microbiological approaches to lowering ethanol concentration in wine. Trends in Food Science & Technology, 21, 293–302.

    Article  CAS  Google Scholar 

  • Lee, S. J., & Noble, A. C. (2003). Characterization of odor-active compounds in californian chardonnay wines using GC–olfactometry and GC–mass spectrometry. Journal of Agricultural and Food Chemistry, 51, 8036–8044.

    Article  CAS  Google Scholar 

  • Leighton, F., & Urquiaga, I. (2007). Changes in cardiovascular risk factors associated with wine consumption in intervention studies in humans. Annals of Epidemiology, 17, S32–S36.

    Article  Google Scholar 

  • LID. (2010). Lallemand I + D. La producción de alcohol por las levaduras vínicas. Retrieved from http://www.enoreports.com/pdf/lallemand_enero10.pdf.

  • Macedo, S., Fernandes, S., Lopes, J. A., de Sousa, H. C., Pereira, P. J., Carmelo, P. J., et al. (2008). Recovery of wine-must aroma compounds by supercritical CO2. Food and Bioprocess Technology, 1, 74–81.

    Article  Google Scholar 

  • Mauri. (2010). Rendimiento del etanol. Información de Investigación. Retrieved from http://www.maurivinyeast.com/upload/ETHANOL_YIELD_SP.pdf.

  • Michnick, S., Roustan, J. L., Remize, F., Barre, P., & Dequin, S. (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast, 13, 783–793.

    Article  CAS  Google Scholar 

  • Morata, A., Gómez-Cordovés, M. C., Suberviola, J., Bartolomé, B., Colomo, B., & Suárez, J. A. (2003a). Adsorption of anthocyanins by yeast cell walls during the fermentation of red wines. Journal of Agriculture and Food Chemistry, 51, 4084–4088.

    Article  CAS  Google Scholar 

  • Morata, A., Gómez-Cordovés, M. C., Colomo, B., & Suárez, J. A. (2003b). Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: Relationship with vitisin A and B formation in red wines. Journal of Agriculture and Food Chemistry, 51, 7402–7409.

    Article  CAS  Google Scholar 

  • Morata, A., Gómez-Cordovés, M. C., Colomo, B., & Suárez, J. A. (2005). Cell wall anthocyanin adsorption by different Saccharomyces strains during the fermentation of Vitis vinifera L. cv Graciano grapes. European Food Research and Technology, 220, 341–346.

    Article  CAS  Google Scholar 

  • Morata, A., Gómez-Cordovés, M. C., Calderón, F., & Suárez, J. A. (2006). Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. International Journal of Food Microbiology, 106, 123–129.

    Article  CAS  Google Scholar 

  • Offeman, R. D., Stephenson, S. K., Franqui, D., Cline, J. L., Robertson, G. H., & Orts, W. J. (2008). Extraction of ethanol with higher alcohol solvents and their toxicity to yeast. Separation and Purification Technology, 63, 444–451.

    Article  CAS  Google Scholar 

  • OIV. (2006). Official methods for the analysis of musts and wines of the International Organisation of Vine and Wine (OIV) (MA-F-AS312-03-METHAN, 2006).

  • Ortega-Heras, M., González-San José, M. L., & Beltrán, S. (2002). Aroma composition of wine studied by different extraction methods. Analytical Chimica Acta, 458, 85–93.

    Article  CAS  Google Scholar 

  • Palomero, F., Morata, A., Benito, S., González, M. C., & Suárez-Lepe, J. A. (2007). Conventional and enzyme-assisted autolysis during ageing over lees in red wines: Influence on the release of polysaccharides from yeast cell walls and on wine monomeric anthocyanin content. Food Chemistry, 105, 838–846.

    Article  CAS  Google Scholar 

  • Palomero, F., Morata, A., Benito, S., Calderón, F., & Suárez-Lepe, J. A. (2009). New genera of yeasts for over-lees aging of red wine. Food Chemistry, 112, 432–441.

    Article  CAS  Google Scholar 

  • Pilipovik, M. V., & Riverol, C. (2005). Assessing dealcoholization system based on reverse osmosis. Journal of Food Engineering, 69, 437–441.

    Article  Google Scholar 

  • Plata, C., Millán, C., Mauricio, J. C., & Ortega, J. M. (2003). Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiology, 20, 217–224.

    Article  CAS  Google Scholar 

  • Pretorius, I. S. (2000). Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast, 16, 675–729.

    Article  CAS  Google Scholar 

  • Querol, A., & Fleet, G. (2006). Yeasts in food and beverages. Berlin: Springer.

    Book  Google Scholar 

  • Rapp, A. (1993). Foreign and undesirable flavours in wine. Paris: TEC & DOC Lavoisier.

    Google Scholar 

  • Savé, R., Nadal, M., Pla, E., Lopez-Bustins, J. A., & de Herralde, F. (2010). Global change influence on vine physiolgy and wine quality in Priorat and Montsant (NE Spain). 28th International Horticultural Congress.

  • Schrier, P. (1979). Flavour composition of wines: A review. CRC Critical Reviews in Food Science and Nutrition, 12, 59–111.

    Article  Google Scholar 

  • Takács, L., Vatai, G., & Korány, K. (2007). Production of alcohol free wine by pervaporation. Journal of Food Engineering, 78, 118–125.

    Article  Google Scholar 

  • Viana, F., Gil, J. V., Vallés, S., & Manzanares, P. (2009). Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae. International Journal of Food Microbiology, 135, 68–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministerio de Industria (Project CENIT DEMETER UPMAGROVINA5). The authors thank S. Somolinos and J. A. Sánchez (Depto. Tecnología de Alimentos, ETSI Agrónomos, UPM) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Morata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loira, I., Morata, A., González, C. et al. Selection of Glycolytically Inefficient Yeasts for Reducing the Alcohol Content of Wines from Hot Regions. Food Bioprocess Technol 5, 2787–2796 (2012). https://doi.org/10.1007/s11947-011-0604-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0604-9

Keywords

Navigation