Skip to main content
Log in

Co-production of Lactic Acid and Lactobacillus rhamnosus Cells from Whey Permeate with Nutrient Supplements

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Lactic acid and cell production from whey permeate by Lactobacillus rhamnosus with different nutrient supplements were investigated in this study. Yeast extract was identified as the most effective nutrient affecting lactic acid production. Increase in inoculum size from 0.05% to 1% (v/v) resulted in a substantial increase in lactic acid productivity from 0.66 to 0.83 g L−1 h−1 (P < 0.001). The optimal temperature for lactic acid production was 37 °C, while the highest cell production was obtained at 42 °C. When whey permeate and yeast extract concentrations were 6.8% (w/v) and 3 g L−1, respectively, lactic acid productivity reached 0.85 g L−1 h−1 after 48-h cultivation, which is 3.40 times of those without nutrient supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal, L., Dutt, K., & Meghwanshi, G. K. (2008). Anaerobic fermentative production of lactic acid using cheese whey and corn steep liquor. Biotechnology Letters, 30(4), 631–635.

    Article  CAS  Google Scholar 

  • Altiok, D., Tokatli, F., & Harsa, S. (2006). Kinetic modelling of lactic acid production from whey by Lactobacillus casei (NRRL B-441). Journal of Chemical Technology and Biotechnology, 81(7), 1190–1197.

    Article  CAS  Google Scholar 

  • Arasaratnam, V., Senthuran, A., & Balasubramaniam, K. (1996). Supplementation of whey with glucose and different nitrogen sources for lactic acid production by Lactobacillus delbrueckii. Enzyme and Microbial Technology, 19(7), 482–486.

    Article  CAS  Google Scholar 

  • Begovic, J., Fira, D., Terzic-Vidojevic, A., & Topisirovic, L. (2010). Influence of carbohydrates on cell properties of Lactobacillus rhamnosus. Central European Journal of Biology, 5(1), 103–110.

    Article  CAS  Google Scholar 

  • Bergmaier, D., Champagne, C. P., & Lacroix, C. (2005). Growth and expolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. Journal of Applied Microbiology, 98(2), 272–284.

    Article  CAS  Google Scholar 

  • Bertrand-Harb, C., Ivanova, I. V., Dalgalarrondo, M., & Haertlle, T. (2003). Evolution of beta-lactoglobulin and alpha-lactalbumin content during yoghurt fermentation. International Dairy Journal, 13(1), 39–45.

    Article  CAS  Google Scholar 

  • Buyukkileci, A. O., & Harsa, S. (2004). Batch production of L(+) lactic acid from whey by Lactobacillus casei NRRL B-441. Journal of Chemical Technology and Biotechnology, 79(9), 1036–1040.

    Article  CAS  Google Scholar 

  • Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1(1), 43–63.

    Article  Google Scholar 

  • Champagne, C. P., Gardner, N. J., & Lacroix, C. (2007). Fermentation technologies for the production of exopolysaccharidesynthesizing Lactobacillus rhamnosus concentrated cultures. Electronic Journal of Biotechnology, 10(2), 211–220.

    Article  CAS  Google Scholar 

  • Cheng, P., Mueller, R. E., Jaeger, S., Bajpai, R., & Iannotti, E. L. (1991). Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. Journal of Industrial Microbiology & Biotechnology, 7(1), 27–34.

    CAS  Google Scholar 

  • Datta, R., & Henry, M. (2006). Lactic acid: Recent advances in products, processes and technologies—A review. Journal of Chemical Technology and Biotechnology, 81(7), 1119–1129.

    Article  CAS  Google Scholar 

  • Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J., & Gokhale, D. (2008). Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Applied and Environmental Microbiology, 74(1), 333–335.

    Article  CAS  Google Scholar 

  • El-Samragy, Y. A., Khorshid, M. A., Foda, M. I., & Shehata, A. E. (1996). Effect of fermentation conditions on the production of citric acid from cheese whey by Aspergillus niger. International Dairy Journal, 29(2–3), 411–416.

    CAS  Google Scholar 

  • Gullon, B., Yanez, R., Alonso, J. L., & Parajo, J. C. (2008). l-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 99(2), 308–319.

    Article  CAS  Google Scholar 

  • Gupta, B., Revagade, N., & Hilborn, J. (2007). Poly(lactic acid) fiber: An overview. Progress in Polymer Science, 32(4), 455–482.

    Article  CAS  Google Scholar 

  • Hofvendahl, K., & Hahn-Hagerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26(2–4), 87–107.

    Article  CAS  Google Scholar 

  • Hugenholtz, P., Pitulle, C., Hershberger, K. L., & Pace, N. R. (1998). Novel division-level bacterial diversity in a Yellowstone hot spring. Journal of Bacteriology, 180(2), 366–376.

    CAS  Google Scholar 

  • Kim, H. O., Wee, Y. J., Kim, J. N., Yun, J. S., & Ryu, H. W. (2006). Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2. Applied Biochemistry and Biotechnology, 131(1–3), 694–704.

    Article  Google Scholar 

  • Liew, S. L., Ariff, A. B., Raha, A. R., & Ho, Y. W. (2005). Optimization of medium composition for the production of a probiotic microorganism, Lactobacillus rhamnosus, using response surface methodology. International Journal of Food Microbiology, 102(2), 137–142.

    Article  CAS  Google Scholar 

  • Macedo, M. G., Lacroix, C., Gardner, N. J., & Champagne, C. P. (2002). Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. International Dairy Journal, 12(5), 419–426.

    Article  CAS  Google Scholar 

  • Manca de Nadra, M. C. (2007). Nitrogen metabolism in lactic acid bacteria from fruits: A review. In Méndez-Vilas (Ed.), Communicating current research and educational topics and trends in applied microbiology (pp. 500–510). Badajoz: Formatex Reseach Center.

    Google Scholar 

  • Mulligan, C. N., & Gibbs, B. F. (1991). Batch conversion of whey permeate to ammonium lactate by Streptococcus cremoris. Biotechnology and Applied Biochemistry, 14(1), 41–53.

    CAS  Google Scholar 

  • Nagarjun, P. A., Rao, R. S., Rajesham, S., & Rao, L. V. (2005). Optimization of lactic acid production in SSF by Lactobacillus amylovorus NRRL B-4542 using Taguchi methodology. Journal of Microbiology, 43, 38–43.

    CAS  Google Scholar 

  • Pescuma, M., Hebert, E. M., Mozzi, F., & Font de Valdez, G. (2007). Hydrolysis of whey proteins by Lactobacillus acidophilus, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus grown in a chemically defined medium. Journal of Applied Microbiology, 103, 1738–1746.

    Article  CAS  Google Scholar 

  • Petrov, K. K., Yankov, D. S., & Beschkov, V. N. (2006). Lactic acid fermentation by cells of Lactobacillus rhamnosus immobilized in polyacrylamide gel. World Journal of Microbiology & Biotechnology, 22, 337–345.

    Article  CAS  Google Scholar 

  • Plackett, R. L., & Burman, J. P. (1944). The design of optimum multifactorial experiments. Biometrica, 33, 305–325.

    Article  Google Scholar 

  • Rezzoug, S. A., & Capart, R. (2003). Assessment of wood liquefaction in acidified ethylene glycol using experimental design methodology. Energy Conversion and Management, 44(5), 781–792.

    Article  CAS  Google Scholar 

  • Roukas, T., & Kotzekidou, P. (1998). Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme and Microbial Technology, 22(3), 199–204.

    Article  CAS  Google Scholar 

  • Silveira, M. S., Fontes C. P. M. L., Guilherme, A. A., Fernandes, F. A. N., & Rodrigues S. (2010). Cashew apple juice as substrate for lactic acid production. Food and Bioprocess Technology. doi:10.1007/s11947-010-0382-9.

  • Tynkkynen, S., Satokari, R., Saarela, M., Mattila-Sandholm, T., & Saxelin, M. (1999). Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Applied and Environmental Microbiology, 65(9), 3908–3914.

    CAS  Google Scholar 

  • Wee, Y. J., Kim, J. N., & Ryu, H. W. (2006). Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology, 44(2), 163–172.

    CAS  Google Scholar 

  • Ye, Z. L., Lu, M., Zheng, Y., Li, Y. H., & Cai, W. M. (2008). Lactic acid production from dining-hall food waste by Lactobacillus plantarum using response surface methodology. Journal of Chemical Technology and Biotechnology, 83(11), 1541–1550.

    Article  CAS  Google Scholar 

  • Zhang, Z. Y., Jin, B., & Kelly, J. M. (2008). Production of L(+)-lactic acid using acid-adapted precultures of Rhizopus arrhizus in a stirred tank reactor. Applied Biochemistry and Biotechnology, 149(3), 265–276.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Ohio Agricultural Research and Development Center (OARDC) Seeds Grant Program. The authors would like to thank Mrs. Mary Wicks (Department of Food, Agricultural and Biological Engineering, OSU) for reading through the manuscript and providing useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yebo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, F., Wan, C., Li, Y. et al. Co-production of Lactic Acid and Lactobacillus rhamnosus Cells from Whey Permeate with Nutrient Supplements. Food Bioprocess Technol 5, 1278–1286 (2012). https://doi.org/10.1007/s11947-010-0426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0426-1

Keywords

Navigation