Skip to main content
Log in

Selection of ripeness stages for hot-air drying of peaches based on drying characteristics and physicochemical properties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this research was to systematically evaluate the impact of varying ripeness stages (categorized into five distinct levels: I, II, III, IV, and V) on the drying behavior, moisture status, cellular injury, texture, rehydration properties, bioactive compounds, antioxidant activities, and sensory attributes of peaches. The ultimate goal was to identify the optimal ripeness stage of peaches for hot-air drying. Results demonstrated that significant disparities exist in drying characteristics among peaches of different ripeness levels. Peaches at ripeness stage III exhibited the most efficient drying kinetics, characterized by the shortest drying duration, highest drying rate, and maximum moisture diffusion coefficient. This was followed by peaches in stages II, I, IV, and V, the differences being attributed to variances in moisture mobility, content, and cellular injury. Additionally, stage III peaches displayed optimal levels of ascorbic acid, total phenolics, antioxidant capacity, and rehydration ratio. Conversely, peaches at stage V excelled in visual appearance, sugar-to-acid ratio, and flavor profile. Consequently, peaches at ripeness stage III are recommended for hot-air drying due to their superior drying efficiency and quality attributes. This study serves as a theoretical foundation for future work on quality categorization and drying methodologies for peaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data obtained during the study are available from the corresponding author upon suitable request.

References

  1. S.K. Chang, C. Alasalvar, F. Shahidi, Review of dried fruits: phytochemicals, antioxidant efficacies, and health benefits. J. Funct. Foods 21, 113–132 (2016). https://doi.org/10.1016/j.jff.2015.11.034

    Article  CAS  Google Scholar 

  2. L. Zhang, X.Y. Kou, X. Huang, G.H. Li, J.W. Liu, J.L. Ye, Peach-gum: a promising alternative for retarding the ripening and senescence in postharvest peach fruit. Postharvest Biol. Technol. 161, 111088 (2020). https://doi.org/10.1016/j.postharvbio.2019.111088

    Article  CAS  Google Scholar 

  3. Y.B. Feng, B.G. Xu, A.E.A. Yagoub, H.L. Ma, Y.H. Sun, X. Xu, X.J. Yu, C.S. Zhou, Role of drying techniques on physical, rehydration, flavor, bioactive compounds and antioxidant characteristics of garlic. Food Chem. 343, 128404 (2021). https://doi.org/10.1016/j.foodchem.2020.128404

    Article  CAS  PubMed  Google Scholar 

  4. Y.Y. Jia, I. Khalifa, L.L. Hu, W. Zhu, J. Li, K.K. Li, C.M. Li, Influence of three different drying techniques on persimmon chips’ characteristics: a comparison study among hot-air, combined hot-air-microwave, and vacuum-freeze drying tchniques. Food Bioprod. Process. 118, 67–76 (2019). https://doi.org/10.1016/j.fbp.2019.08.018

    Article  Google Scholar 

  5. E. Nakilcioglu-Tas, G. Cosan, S. Ötles, Optimization of process conditions to improve the quality properties of healthy watermelon snacks developed by hot-air drying. J. Food Meas. Charact. 15, 2146–2160 (2021). https://doi.org/10.1007/s11694-020-00808-3

    Article  Google Scholar 

  6. K.H. Wang, Q.Y. Li, Y. Xue, Z.Q. Yang, P.Y. He, X.R. Jia, W.X. Ren, J. Wang, H.D. Xu, Ripening induced degradation of pectin and cellulose affects the medium- and short-wave infrared drying characteristics of mulberry. Food Chem. 434, 137490 (2024). https://doi.org/10.1016/j.foodchem.2023.137490

    Article  CAS  PubMed  Google Scholar 

  7. Y. Li, L. Li, X. Zhang, O. Mu, J. Tian, J. Yan, L. Guo, Y. Wang, L. Song, X. Yu, Differences in total phenolics, antioxidant activity and metabolic characteristics in peach fruits at different stages of ripening. LWT 178, 114586 (2023). https://doi.org/10.1016/j.lwt.2023.114586

    Article  CAS  Google Scholar 

  8. P. Dabesor, D. Sanni, A. Kolawole, V. Enujiugha, O. Lawal, A. Edeh, Changes in physicochemical properties and enzymes associated with ripening of snake tomato (Trichosanthes cucumerina L.) fruit. Biocatal. Agric. Biotechnol. 40, 102313 (2023). https://doi.org/10.1016/j.bcab.2022.102313

    Article  CAS  Google Scholar 

  9. P. Kumar, T. Shuprajhaa, P. Subramaniyan, A. Mohanasundaram, K. Shiva, M. Mayilvaganan, U. Subbaraya, Ripening dependent changes in skin color, physicochemical attributes, in-vitro glycemic response and volatile profiling of banana varieties. Food Biosci. 56, 1032274 (2023). https://doi.org/10.1016/j.fbio.2023.103274

    Article  CAS  Google Scholar 

  10. A. Diop, J.M. Meot, M. Lechaudel, F. Chiroleu, N.D. Ndiaye, C. Mertz, M. Cisse, M. Chillet, Impact of preharvest and postharvest on color changes during convective drying of mangoes. Foods 10, 490 (2021). https://doi.org/10.3390/foods10030490

    Article  PubMed  PubMed Central  Google Scholar 

  11. I. Karabulut, T. Bilenler, K. Sislioglu, I. Gokbulut, I.S. Ozdemir, F. Seyhan, K. Ozturk, Chemical composition of apricots affected by fruit size and drying methods. Dry. Technol. 36, 1937–1948 (2018). https://doi.org/10.1080/07373937.2018.1427762

    Article  CAS  Google Scholar 

  12. H. Wang, X.Y. Li, J. Wang, S.K. Vidyarthi, H.O. Wang, X.G. Zhang, L. Gao, K.W. Yang, J.S. Zhang, H.W. Xiao, Effects of postharvest ripening on water status and distribution, drying characteristics, volatile profiles, phytochemical contents, antioxidant capacity and microstructure of kiwifruit (Actinidia deliciosa). Food Control 139, 109062 (2022). https://doi.org/10.1016/j.foodcont.2022.109062

    Article  CAS  Google Scholar 

  13. L.Z. Deng, Z.L. Pan, Q. Zhang, Z.L. Liu, Y. Zhang, J.S. Meng, Z.J. Gao, H.W. Xiao, Effects of ripening stage on physicochemical properties, drying kinetics, pectin polysaccharides contents and nanostructure of apricots. Carbohydr. Polym. 222, 8 (2019). https://doi.org/10.1016/j.carbpol.2019.114980

    Article  CAS  Google Scholar 

  14. Y.H. Zhou, Y.P. Pei, P.P. Sutar, D.H. Liu, L.Z. Deng, X. Duan, Z.L. Liu, H.W. Xiao, Pulsed vacuum drying of banana: effects of ripeness on drying kinetics and physicochemical properties and related mechanism. LWT 161, 113362 (2022). https://doi.org/10.1016/j.lwt.2022.113362

    Article  CAS  Google Scholar 

  15. Y. Ando, K. Mizutani, N. Wakatsuki, Electrical impedance analysis of potato tissues during drying. J. Food Eng. 121, 24–31 (2014). https://doi.org/10.1016/j.jfoodeng.2013.08.008

    Article  Google Scholar 

  16. Y. Ando, S. Hagiwara, H. Nabetani, I. Sotome, T. Okunishi, H. Okadome, T. Orikasa, A. Tagawa, Effects of prefreezing on the drying characteristics, structural formation and mechanical properties of microwave-vacuum dried apple. J. Food Eng. 244, 170–177 (2019). https://doi.org/10.1016/j.jfoodeng.2018.09.026

    Article  CAS  Google Scholar 

  17. W.J.N. Fernando, H.C. Low, A.L. Ahmad, Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. J. Food Eng. 102, 310–316 (2011). https://doi.org/10.1016/j.jfoodeng.2010.09.004

    Article  Google Scholar 

  18. T.X. Hu, J. Ye, P.W. Tao, H.X. Li, J.H. Zhang, Y.Y. Zhang, Z.B. Ye, The tomato HD-Zip I transcription factor SIHZ24 modulates ascorbate accumulation through positive regulation of the d-mannose/l-galactose pathway. Plant J. 85, 16–29 (2016). https://doi.org/10.1111/tpj.13085

    Article  CAS  PubMed  Google Scholar 

  19. L.Y. Zhou, X.N. Guo, J.F. Bi, J.Y. Yi, Q.Q. Chen, X.Y. Wu, M. Zhou, Drying of garlic slices (Allium sativum L.) and its effect on thiosulfinates, total phenolic compounds and antioxidant activity during infrared drying. J. Food Process. Preserv. 41, 12734 (2017). https://doi.org/10.1111/jfpp.12734

    Article  CAS  Google Scholar 

  20. D.Q. Huang, Y.H. Zhao, M.H. Cao, L. Qiao, Z.L. Zheng, Integrated systems biology analysis of transcriptomes reveals candidate genes for acidity control in developing fruits of sweet orange (Citrus sinensis L. osbeck). Front. Plant Sci. 7, 486 (2016). https://doi.org/10.3389/fpls.2016.00486

    Article  PubMed  PubMed Central  Google Scholar 

  21. D.T. Li, L.Z. Deng, T.T. Dai, M.S. Chen, R.H. Liang, W. Liu, C.M. Liu, J. Chen, J. Sun, Ripening induced degradation of pectin and cellulose affects the far infrared drying kinetics of mangoes. Carbohydr. Polym. 219, 119582 (2022). https://doi.org/10.1016/j.carbpol.2022.119582

    Article  CAS  Google Scholar 

  22. L. Cui, Y.N. Chen, M. Li, T.Y. Liu, P. Yang, L.P. Guo, X. Wang, Detection of water variation in rosebuds during hot-air drying by LF-NMR and MRI. Dry. Technol. 38, 304–312 (2020). https://doi.org/10.1080/07373937.2019.1565577

    Article  Google Scholar 

  23. J. Wang, W.S. Mu, X.M. Fang, A.S. Mujumdar, X.H. Yang, L.Y. Xue, L. Xie, H.W. Xiao, Z.J. Gao, Q. Zhang, Pulsed vacuum drying of thompson seedless grape: effects of berry ripeness on physicochemical properties and drying characteristic. Food Bioprod. Process. 106, 117–126 (2017). https://doi.org/10.1016/j.fbp.2017.09.003

    Article  CAS  Google Scholar 

  24. J.R. Gonzalez-Araiza, M.C. Ortiz-Sanchez, F.M. Vargas-Luna, J.M. Cabrera-Sixto, Application of electrical bio-impedance for the evaluation of strawberry ripeness. Int. J. Food Prop. 20, 1044–1050 (2017). https://doi.org/10.1080/10942912.2016.1199033

    Article  Google Scholar 

  25. Y.B. Feng, X.J. Yu, A.A. Yagoub, B.G. Xu, B.G. Wu, L. Zhang, C.S. Zhou, Vacuum pretreatment coupled to ultrasound assisted osmotic dehydration as a novel method for garlic slices dehydration. Ultrason. Sonochem. 50, 363–372 (2019). https://doi.org/10.1016/j.ultsonch.2018.09.038

    Article  CAS  PubMed  Google Scholar 

  26. F. Hidaka, T. Satoh, A. Fujioka, K. Takeda, H. Imanaka, N. Ishida, K. Imamura, Controlling the drying process in vacuum foam drying under low vacuum conditions by inducing foaming by needle stimulation of the solution. Dry. Technol. 37, 1520–1527 (2019). https://doi.org/10.1080/07373937.2018.1517363

    Article  Google Scholar 

  27. B.G. Xu, M. Feng, B. Chitrakar, B.X. Wei, B. Wang, C.S. Zhou, H.L. Ma, B. Wang, L. Chang, G.Y. Ren, Selection of drying techniques for pingyin rose on the basis of physicochemical properties and volatile compounds retention. Food Chem. 385, 132539 (2022). https://doi.org/10.1016/j.foodchem.2022.132539

    Article  CAS  PubMed  Google Scholar 

  28. H.J. Zhou, Z.F. Yu, Z.W. Ye, Effect of bagging duration on peach fruit peel color and key protein changes based on iTRAQ quantitation. Sci. Hortic. 246, 217–226 (2019). https://doi.org/10.1016/j.scienta.2018.10.072

    Article  CAS  Google Scholar 

  29. D.Z. Wang, X.C. Wang, Y.Y. Chen, Y. Wu, X.L. Zhang, Strawberry ripeness classification method in facility environment based on red color ratio of fruit rind. Comput. Electron. Agric. 214, 108313 (2023). https://doi.org/10.1016/j.compag.2023.108313

    Article  Google Scholar 

  30. J. Kroehnke, J. Szadzińska, E.R. Kubzdela, R. Biegańska-Marecik, G. Musielak, D. Mierzwa, Osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa)—the influence of ultrasound on process kinetics and product quality. Ultrason. Sonochem. 71, 105377 (2021). https://doi.org/10.1016/j.ultsonch.2020.105377

    Article  CAS  PubMed  Google Scholar 

  31. Y.Y. Xu, Y.D. Xiao, C. Lagnika, D.J. Li, C.Q. Liu, N. Jiang, J.F. Song, M.A. Zhang, Comparative evaluation of nutritional properties, antioxidant capacity and physical characteristics of cabbage (Brassica oleracea var. capitate var L.) subjected to different drying methods. Food Chem. 309, 124935 (2020). https://doi.org/10.1016/j.foodchem.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  32. I. Zahoor, M.A. Khan, Microwave assisted convective drying of bitter gourd: drying kinetics and effect on ascorbic acid, total phenolics and antioxidant activity. J. Food Meas. Charact. 13, 2481–2490 (2019). https://doi.org/10.1007/s11694-019-00168-7

    Article  Google Scholar 

  33. T. Mahmood, F. Anwar, N. Afzal, R. Kausar, S. Ilyas, M. Shoaib, Influence of ripening stages and drying methods on polyphenolic content and antioxidant activities of mulberry fruits. J. Food Meas. Charact. 11, 2171–2179 (2017). https://doi.org/10.1007/s11694-017-9602-6

    Article  Google Scholar 

  34. I. Doymaz, H. Demir, A. Yildirim, Drying of quince slices: effect of pretreatments on drying and rehydration characteristics. Chem. Eng. Commun. 202, 1271–1279 (2015). https://doi.org/10.1080/00986445.2014.921619

    Article  CAS  Google Scholar 

  35. M.L. Rojas, P.E.D. Augusto, Microstructure elements affect the mass transfer in foods: the case of convective drying and rehydration of pumpkin. LWT 93, 102–108 (2018). https://doi.org/10.1016/j.lwt.2018.03.031

    Article  CAS  Google Scholar 

  36. L. Qiao, M.H. Cao, J. Zheng, Y.H. Zhao, Z.L. Zheng, Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange. BMC Plant Biol. 17, 186 (2017). https://doi.org/10.1186/s12870-017-1138-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. F.J. Xu, H.S. An, J.Y. Zhang, Z.H. Xu, F. Jiang, Effects of fruit load on sugar/acid quality and puffiness of delayed-harvest citrus. Horticulturae 7, 189 (2021). https://doi.org/10.3390/horticulturae7070189

    Article  Google Scholar 

  38. M. Das-Purkayastha, A. Nath, B.C. Deka, C.L. Mahanta, Thin layer drying of tomato slices. J. Food Sci. Technol. MYS 50, 642–653 (2013). https://doi.org/10.1007/s13197-011-0397-x

    Article  CAS  Google Scholar 

  39. R.G. Gong, W. Yang, Z.H. Wang, M.G. Liao, G.L. Liang, Study on the sugar-acid ratio and relevant metabolizing enzyme activities in navel orange fruits from different eco-regions. Rev. Bras. Frutic. 37, 835–844 (2015). https://doi.org/10.1590/0100-2945-210/14

    Article  Google Scholar 

  40. K.H. Wang, J. Qi, Y. Jin, F. Li, J. Wang, H.D. Xu, Influence of fruit maturity and lactic fermentation on physicochemical properties, phenolics, volatiles, and sensory of mulberry juice. Food Biosci. 48, 101782 (2022). https://doi.org/10.1016/j.fbio.2022.101782

    Article  CAS  Google Scholar 

  41. N.S. Janzantti, M. Monteiro, HS-GC-MS-O analysis and sensory acceptance of passion fruit during maturation. J. Food Sci. Technol. MYS 54, 2594–2601 (2017). https://doi.org/10.1007/s13197-017-2671-z

    Article  CAS  Google Scholar 

Download references

Funding

Zhejiang Provincial Natural Science Foundation of China (No. LTGN23C200015), Ningbo Public Welfare Technology Plan Project (No. 2022S142) and Ningbo Public Welfare Technology Plan Project (No. 2022S152).

Author information

Authors and Affiliations

Authors

Contributions

KS: investigation, methodology, writing—original draft. YF: conceptualization, project administration, supervision. YZ: investigation, methodology, writing—original draft. ZY: conceptualization, project administration, supervision. CZ: validation, formal analysis. AEGAY: writing—original draft. WC: methodology. JW: supervision.

Corresponding authors

Correspondence to Yabin Feng or Zhenfeng Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suo, K., Feng, Y., Zhang, Y. et al. Selection of ripeness stages for hot-air drying of peaches based on drying characteristics and physicochemical properties. Food Measure 18, 1980–1990 (2024). https://doi.org/10.1007/s11694-023-02281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02281-0

Keywords

Navigation