Skip to main content
Log in

Use of Hydrolysates from Yellowfin Tuna (Thunnus albacares) Heads as a Complex Nitrogen Source for Lactic Acid Bacteria

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Two different peptones obtained by enzymatic hydrolysis of yellowfin tuna (Thunnus albacares) head waste have been shown to be effective in promoting the growth of lactic acid bacteria (Lactobacillus bulgaricus Persian Type Culture Collection (PTCC) 1332, Lactobacillus acidophilus PTCC 1643, Lactobacillus casei PTCC 1608, Lactobacillus delbrukii PTCC 1333, Lactobacillus plantarum PTCC 1058, Lactococcus lactis PTCC 1336, and Lactobacillus sakei PTCC 1712). Peptones obtained from the enzymatic hydrolysis with Alcalase or Protamex were used instead of the standard peptones used in commercial MRS media. Peptones produced by Alcalase and Protamex had a 34% and 19% degree of hydrolysis, respectively. The results showed that the peptones from Alcalase and Protamex were better at promoting lactic acid bacteria (LAB) growth than the commercial MRS media (P < 0.05). The choice of proteolytic enzyme used to produce the fish hydrolysate had a considerable impact on the performance of the resulting hydrolysate, both in terms of maximum growth rate and biomass production. Peptones produced using Alcalase, with a higher degree of hydrolysis, induced better growth and performed better overall as an LAB substrate than those using Protamex. Current study revealed that enzymatic-modified fish by-products can be used as low cast nitrogen source for bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • AOAC. (2005). Official methods of analysis (Sixteenthth ed.). Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Aspmo, S. I., Horn, S. J., & Eijsink, V. G. H. (2005a). Use of hydrolysates from Atlantic cod (Gadus morhua L.) viscera as a complex nitrogen source for lactic acid bacteria. FEMS Microbiology Letters, 248, 65–68.

    Article  CAS  Google Scholar 

  • Aspmo, S. I., Horn, S. J., & Eijsink, V. G. H. (2005b). Hydrolysates from Atlantic cod (Gadus morhua L.) viscera as components of microbial growth media. Process Biochemistry, 40, 3714–3722.

    Article  CAS  Google Scholar 

  • Baca, D. R., Pena-Vera, M. T., & Diaz-Castaneda, M. (1991). Production of fish protein hydrolysates with bacterial proteases: yield and nutritional value. Journal of Food Science, 56, 309–314.

    Article  Google Scholar 

  • Bhaskar, N., Benila, T., Radha, C., & Lalitha, R. G. (2008). Optimization of enzymatic hydrolysis of visceral waste proteins of Catla (Catla catla) for preparing protein hydrolysate using a commercial protease. Bioresource Technology, 99(10), 4105.

    Article  CAS  Google Scholar 

  • Calo-Mata, P., Arlindo, S., Boehme, K., de Miguel, T., Pascoal, A., & Barros-Velazquez, J. (2008). Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology, 1, 43–63. doi:10.1007/s11947-007-0021-2.

    Article  Google Scholar 

  • Cassia, R. O., Martone, C. B., & Sanchez, J. J. (2000). Characterization of fish protein hydrolysates obtained by enzymatic autolysis. Latin American Applied Research, 30, 241–244.

    CAS  Google Scholar 

  • Clausen, E., Gildberg, A., & Raa, J. (1985). Preparation and testing of an autolysate of fish viscera as growth substrate for bacteria. Applied Environmental Microbiology, 50, 1556–1557.

    CAS  Google Scholar 

  • Dufossee, L., de la Broise, D., & Guerard, F. (2001). Evaluation of nitrogenous substrates such as peptones from fish: A new method based on Gompertz modeling of microbial growth. Current Microbiology, 42, 32–38.

    Article  Google Scholar 

  • Espe, M., Haaland, H., Njaa, L., & Raa, J. (1992). Growth of young rats on diets based on fish silage with different degrees of hydrolysis. Food Chemistry, 44, 195–200.

    Article  Google Scholar 

  • Gildberg, A., Batista, I., & Strøm, E. (1989). Preparation and characterization of peptones obtained by a two-step enzymatic hydrolysis of whole fish. Biotechnology Applied Biochemistry, 11, 413–423.

    CAS  Google Scholar 

  • Guerard, F., Dufosse, L., De La Broise, D., & Binet, A. (2001). Enzymatic hydrolysis of proteins from yellowfin tuna (Thunnus albacares) wastes using Alcalase. Journal of Molecular Catalysis. B, Enzymatic, 11, 1051–1059.

    Article  CAS  Google Scholar 

  • Horn, S. J., Aspmo, S. I., & Eijsink, V. G. H. (2005). Growth of Lactobacillus plantarum in media containing hydrolysates of fish viscera. Journal of Applied Microbiology, 99, 1082–1089.

    Article  CAS  Google Scholar 

  • Horn, S. J., Aspmo, S. I., & Eijsink, V. G. H. (2007). Evaluation of different cod viscera fractions and their seasonal variation used in a growth medium for lactic acid bacteria. Enzyme and Microbial Technology, 40, 1328–1334.

    Article  CAS  Google Scholar 

  • Hoyle, N. T., & Merritt, J. H. (1994). Quality of fish protein hydrolysate from Herring (Clupea harengus). Journal of Food Science, 59. 76–79.

    Google Scholar 

  • Iranian Fisheries Organization (IFO). (2006). www.Shilat.com.

  • Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1), 43–81.

    Article  CAS  Google Scholar 

  • Larsen, T., Thilsted, S. H., Kongsback, K., & Hanse, M. (2000). Whole small fish as a rich calcium source. British Journal of Nutrition, 83, 191–196.

    CAS  Google Scholar 

  • Laufenberg, G., Kunz, B., & Nystroem, M. (2003). Transformation of vegetable waste into value added products. Bioresource Technology, 87, 167–198.

    Article  CAS  Google Scholar 

  • Lauret, R., MorelDeville, F., Berthier, F., ChampomierVerges, M., Postma, P., & Ehrlich, S. D. (1996). Carbohydrate utilization in Lactobacillus sakei. Applied Environmental Microbiology, 62(6), 1922–1927.

    CAS  Google Scholar 

  • Layne, E. (1957). Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology (Vol. 3, p. 450). New York: Academic.

    Google Scholar 

  • Martone, C. B., Borla, O. P., & Sanchez, J. J. (2005). Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresource Technology, 96, 383–387.

    Article  CAS  Google Scholar 

  • Møretrø, T., Hagen, B. F., & Axelsson, L. (1998). A new, completely defined medium for meat lactobacilli. Journal of Applied Microbiology, 85, 715–722.

    Article  Google Scholar 

  • Mukhin, V. A., Novikov, V. Yu, & Ryzhikova, L. S. (2001). A protein hydrolysate enzymatically produced from the industrial waste of processing icelandic scallop Chlamys islandica. Applied Biochemistry and Microbiology, 37, 292–296.

    Article  CAS  Google Scholar 

  • Nilsang, S., Lertsiri, S., Suphantharika, M., & Assavanig, A. (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal of Food Engineering, 70, 571–578.

    Article  Google Scholar 

  • Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Journal of Food Chemistry, 115, 238–242.

    Article  CAS  Google Scholar 

  • Perea, A., Ugalde, U., Rodriguez, I., & Serra, J. L. (1993). Preparation and characterization of whey protein hydrolysates: Application in industrial whey bioconversion processes. Enzyme and Microbial Technology, 15, 418–423.

    Article  CAS  Google Scholar 

  • Prema, P., Smila, D., Palavesam, A., & Immanuel, G. (2008). Production and characterization of an antifungal compound (3-Phenyllactic acid) produced by Lactobacillus plantarum strain. Food and Bioprocess Technology, . doi:10.1007/s11947-008-0127-1. In Press.

    Google Scholar 

  • Ritchie, A. H., & Mackie, I. M. (1992). Preparation of fish protein hydrolysates. Animal Feed Science and Technology, 7, 125–133.

    Article  Google Scholar 

  • Sabikhi, L., Babu, R., Thompkinson, D. K., & Kapila, S. (2008). Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food and Bioprocess Technology, . doi:10.1007/s11947-008-0135-1. In Press.

    Google Scholar 

  • Vaseliva-Tonkova, E., Nustorova, M., & Gushterova, A. (2007). New protein hydrolysates from collagen wastes used as peptone for bacterial growth. Current Microbiology, 54, 54–57.

    Article  Google Scholar 

  • Vazquez, J. A., & Murado, M. A. (2008). Enzymatic hydrolysates from food wastewater as a source of peptones for lactic acid bacteria productions. Enzyme and Microbial Technology, 43, 66–72.

    Article  CAS  Google Scholar 

  • Vazquez, J. A., Gonzalez, M. P., & Murado, M. A. (2004a). Peptones from autohydrolysed fish viscera for nisin and pediocin production. Journal of Biotechnology, 112, 299–311.

    Article  CAS  Google Scholar 

  • Vazquez, J. A., Gonzalez, M. P., & Murado, M. A. (2004b). A new marine medium—use of different fish peptones and comparative study of the growth of selected species of marine bacteria. Enzyme and Microbial Technology, 35, 385–392.

    CAS  Google Scholar 

  • Wells, G. A. H., Scott, A. C., Johnson, C. T., Gunning, R. F., Hancock, R. D., Jeffrey, M., et al. (1987). A novel progressive spongiform encephalopathy in cattle. Veterinary Record, 121, 419–420.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge Dr. M. A. Mirzaee and Mrs. E. Mohagheghi at Novozymes Co. branch office in Iran for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoudreza Ovissipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safari, R., Motamedzadegan, A., Ovissipour, M. et al. Use of Hydrolysates from Yellowfin Tuna (Thunnus albacares) Heads as a Complex Nitrogen Source for Lactic Acid Bacteria. Food Bioprocess Technol 5, 73–79 (2012). https://doi.org/10.1007/s11947-009-0225-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0225-8

Keywords

Navigation