Skip to main content
Log in

Thin Layer Drying of African Breadfruit (Treculia africana) Seeds: Modeling and Rehydration Capacity

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

African breadfruit (ABF) seeds are underutilized plant resources, which have been reported to have high potential for novel food and industrial uses. The kinetics of moisture removal during air drying of the whole (WS) and dehulled (DS) seeds was studied at temperatures of 40–70 °C. Five empirical models were tested for predicting the experimental data. Drying of ABF seeds followed an exponential decay pattern, while drying predominantly took place during the falling rate periods. All the drying models predicted the experimental data above 90% accuracy while the Henderson–Pabis model gave the best fit (0.95 < r 2 < 0.99) at most of the experimental conditions. Effective moisture diffusivity, D eff, ranged from 3.65 to 7.15 × 10−9 m2/s and 3.95 to 6.10 × 10−9 m2/s for WS and DS, respectively. D eff showed significant dependence on the moisture content (p < 0.01). Rehydration capacity of DS was not significantly affected by drying temperature while that of WS increased with drying temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

T :

Absolute temperature (K)

t :

Drying time (s)

M :

Moisture content (percent dry basis)

D :

Moisture diffusivity (m2/s)

R :

Hydraulic radius (m)

x :

Radial distance moved by the moisture (m)

n :

Series number

MR:

Moisture ratio

K:

Kelvin

C1, C2, C3:

Constants in Eqs. 9 to 13

kko :

Constants in Eq. 3

RMSE:

Root mean square error

P :

Relative percent error

p :

Level of significance

V :

Volume of the seeds

pred:

Predicted

exp:

Experimental

eff:

Effective

o:

Initial

e:

Equilibrium

a:

Major

b:

Minor

References

  • AOAC. (1984). Moisture in dried fruits. In S. Williams (Ed.), Official methods of analysis of the Association of Official Analytical Chemists (p. 415). Arlington, VA.: AOAC.

    Google Scholar 

  • Badifu, G. I. O., & Akubor, P. I. (2001). Influence of pH and sodium chloride on selected functional and physical properties of African breadfruit (Treculia africana) kernel flour. Plant Foods for Human Nutrition, 56, 105–15. doi:10.1023/A:1011194927947.

    Article  CAS  Google Scholar 

  • Crank, J. (1975). The mathematics of diffusion (2nd ed.). Oxford, UK: Clarendon.

    Google Scholar 

  • Di Matteo, M., Cinquanta, L., Galiero, G., & Crescitelli, S. (2003). A mathematical model of mass transfer in spherical geometry: Plum (Prunus domestica) drying. Journal of Food Engineering, 58, 183–192. doi:10.1016/S0260-8774(02)00368-0.

    Google Scholar 

  • Díaz, E. L., Giannuzzi, L., & Giner, S. A. (2008). Apple pectic gel produced by rehydration. Food and Bioprocess Technology. doi:10.1007/s11947-007-0035-9.

  • Edet, E. E., Eka, O. U., & Ifon, E. T. (1984). Chemical evaluation of the nutritive value of seeds of African breadfruit (Treculia africana). Food Chemistry, 17, 41–47. doi:10.1016/0308-8146(85)90091-3.

    Article  Google Scholar 

  • Ekpeyong, I. E. (1985). Chemical composition and amino acid contents of African breadfruit (Treculia africana) seeds. Food Chemistry, 17, 59–64. doi:10.1016/0308-8146(85)90093-7.

    Article  Google Scholar 

  • El-Aouar, A. A., Azoubel, P. M., & Murr, F. E. X. (2003). Drying kinetics of fresh and osmotically pre-treated papaya (Carica papaya L.). Journal of Food Engineering, 59, 85–91. doi:10.1016/S0260-8774(02)00434-X.

    Article  Google Scholar 

  • Giami, S. Y., Adindu, M. N., Hart, A. D., & Denenu, E. O. (2001). Effect of heat processing on in-vitro protein digestibility and some chemical properties of African breadfruit (Treculia africana Decne) seeds. Plant Foods for Human Nutrition, 56, 117–126. doi:10.1023/A:1011181412808.

    Article  CAS  Google Scholar 

  • Henderson, S. M., & Pabis, S. (1961). Grain drying theory. II: Temperature effects on drying coefficients. Journal of Agricultural Engineering Research, 6, 169–174.

    Google Scholar 

  • Hernandez, J. A., Pavon, G., & Garcia, M. A. (2000). Analytical solution of mass transfer equation considering shrinkage for modelling food drying kinetics. Journal of Food Engineering, 45, 1–10. doi:10.1016/S0260-8774(00)00033-9.

    Article  Google Scholar 

  • Islam, R. M., & Mujumdar, A. S. (2003). Role of product shrinkage in drying rate predictions using a liquid diffusion model. International Communications in Heat and Mass Transfer, 30(3), 391–400. doi:10.1016/S0735-1933(03)00057-5.

    Article  Google Scholar 

  • Ituen, E. U. U., Mittal, J. P., & Adeoti, J. S. (1985). Water absorption in cereal grains and its effects on their rupture stress. Journal of Food Process Engineering, 8, 147–58. doi:10.1111/j.1745-4530.1986.tb00108.x.

    Article  Google Scholar 

  • Jha, S., & Prasad, S. (1993). Moisture diffusivity and thermal expansion of gorjon nut. Journal of Food Science and Technology, Mysore 30, 163–165.

    Google Scholar 

  • Lewicki, P. P., Le, H. V., & Pomaranska-Łazuka, W. (2002). Effect of pre-treatment on convective drying of tomatoes. Journal of Food Engineering, 54, 141–146. doi:10.1016/S0260-8774(01)00199-6.

    Article  Google Scholar 

  • Maskan, M. (2001). Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48, 177–182. doi:10.1016/S0260-8774(00)00155-2.

    Article  Google Scholar 

  • Maskan, M. (2002). Effect of processing on hydration kinetics of three wheat products of the same variety. Journal of Food Engineering, 52, 337–341. doi:10.1016/S0260-8774(01)00124-8.

    Article  Google Scholar 

  • Meda, L., & Ratti, C. (2005). Rehydration of freeze-dried strawberries at varying temperature. Journal of Food Process Engineering, 28, 233–246. doi:10.1111/j.1745-4530.2005.00404.x.

    Article  Google Scholar 

  • Muthukumarappan, K., & Gunasekaran, S. (1994a). Moisture diffusivity of corn kernel components during adsorption. Part I: Germ. Transactions of the ASAE, 37(4), 1263–1268.

    Google Scholar 

  • Muthukumarappan, K., & Gunasekaran, S. (1994b). Moisture diffusivity of corn kernel components during adsorption. Part II: Germ. Transactions of the ASAE, 37(4), 1275–1280.

    Google Scholar 

  • Nieto, A. B., Castro, M. A., & Alzamora, S. M. (2001). Kinetics of moisture transfer during air drying of blanched and/or osmotically dehydrated mango. Journal of Food Engineering, 50, 175–85. doi:10.1016/S0260-8774(01)00026-7.

    Article  Google Scholar 

  • Nwabueze, T. U. (2006). Effect of hydration and screw speed on the nutrient and acceptability of extruded ready-to-eat African breadfruit (Treculia africana) snack. Nigerian Food Journal, 24, 107–113.

    Google Scholar 

  • Okechukwu, P. E., Okaka, J. C., & Chukwunenye, I. B. (1980). Preliminary investigation into the malting characteristics of Treculia africana. Nigerian Food Journal, 2, 149–151.

    Google Scholar 

  • Osagie, A. U., & Odutuga, A. A. (1986). Chemical characterization and edibility of the oils extracted from four Nigerian oil seeds. Nigerian Journal of Pure and Applied Sciences, 1, 35–42.

    Google Scholar 

  • Page, G. E. (1949). Factors influencing the maximum rates of air drying shelled corn in thin layers. M.Sc. Thesis. USA: Purdue University, Indiana.

  • Pardeshi, I. L., & Chattopadhyay, P. K. (2008). Hot air puffing kinetics for soy-fortified wheat-based ready-to-eat (RTE) snacks. Food and Bioprocess Technology. doi:10.1007/s11947-008-0100-z.

  • Perry, R. H., & Chilton, C. H. (1975). Chemical engineers handbook (5th ed.). New York: McGraw Hill.

    Google Scholar 

  • Ross, I. J., & White, G. M. (1972). Thin layer drying characteristics of white corn. Transactions of the American Society of Civil Engineers, 15(1), 175–176.

    Google Scholar 

  • Sabarez, H. T., & Price, W. E. (1999). A diffusion model for prune dehydration. Journal of Food Engineering, 42, 167–172. doi:10.1016/S0260-8774(99)00115-6.

    Article  Google Scholar 

  • Sankat, C. K., Castaigne, F., & Maharaj, R. (1996). The air drying behaviour of fresh and osmotically dehydrated banana slices. International Journal of Food Science & Technology, 31, 123–135. doi:10.1111/j.1365-2621.1996.332-35.x.

    Article  CAS  Google Scholar 

  • Shittu, T. A., Awonorin, S. O., & Raji, A. O. (2004). Evaluating some of empirical models for predicting water absorption properties in African breadfruit (Treculia africana) seeds. International Journal of Food Properties, 7(3), 585–602. doi:10.1081/JFP-200033033.

    Article  Google Scholar 

  • Simal, S., Femenia, A., Llull, P., & Rossello, C. (2000). Dehydration of aloe vera: Simulation of drying curves and evaluation of functional properties. Journal of Food Engineering, 43, 109–114. doi:10.1016/S0260-8774(99)00139-9.

    Article  Google Scholar 

  • Simal, S., Femenia, A., Garau, M. C., & Rossello, C. (2005). Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. Journal of Food Engineering, 66, 323–328. doi:10.1016/j.jfoodeng.2004.03.025.

    Article  Google Scholar 

  • Singh, B. P. N., & Kulshrestha, S. P. (1987). Kinetics of water sorption by soybean and pigeon pea grains. Journal of Food Science, 52, 1538–41, 1544. doi:10.1111/j.1365-2621.1987.tb05874.x.

    Article  Google Scholar 

  • Umoh, I. B. (1998). Commonly used fruits in Nigeria. In A. V. Osagie, & O.W. Eka (Eds.), Nutritional quality of plant foods. Nigeria. Nigeria: Post harvest Research Unit, Department of Biochemistry, University of Benin.

    Google Scholar 

  • Uzomah, A., Ezejie, C. O., Igbo, C. F., Onabu, P. C., & Nwufor, M. I. (2000). Effect of chemical treatment on cooking time of African breadfruit (Treculia africana Decne) seeds. Journal of Sustainable Agriculture Environment, 2, 40–46.

    Google Scholar 

  • Xanthopoulos, G., Oikonomou, N., & Lambrinos, G. (2007). Applicability of a single-layer drying model to predict the drying rate of whole figs. Journal of Food Engineering, 81, 553–559. doi:10.1016/j.jfoodeng.2006.11.033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Shittu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shittu, T.A., Raji, A.O. Thin Layer Drying of African Breadfruit (Treculia africana) Seeds: Modeling and Rehydration Capacity. Food Bioprocess Technol 4, 224–231 (2011). https://doi.org/10.1007/s11947-008-0161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-008-0161-z

Keywords

Navigation