Skip to main content

Advertisement

Log in

Functional MRI for Surgery of Gliomas

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of Review

Advanced neuroimaging techniques such as functional MRI (fMRI) and diffusion MR tractography have been increasingly used at every stage of the surgical management of brain gliomas, as a means to improve tumor resection while preserving brain functions. This review provides an overview of the last advancements in the field of functional MRI techniques, with a particular focus on their current clinical use and reliability in the preoperative and intraoperative setting, as well as their future perspectives for personalized multimodal management of patients with gliomas.

Recent Findings

fMRI and diffusion MR tractography give relevant insights on the anatomo-functional organization of eloquent cortical areas and subcortical connections near or inside a tumor. Task-based fMRI and diffusion tensor imaging (DTI) tractography have proven to be valid and highly sensitive tools for localizing the distinct eloquent cortical and subcortical areas before surgery in glioma patients; they also show good accuracy when compared with intraoperative stimulation mapping data. Resting-state fMRI functional connectivity as well as new advanced HARDI (high angular resolution diffusion imaging) tractography methods are improving and reshaping the role of functional MRI for surgery of gliomas, with potential benefit for personalized treatment strategies.

Summary

Noninvasive functional MRI techniques may offer the opportunity to perform a multimodal assessment in brain tumors, to be integrated with intraoperative mapping and clinical data for improving surgical management and oncological and functional outcome in patients affected by gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Riva M, Bello L. Low-grade glioma management: a contemporary surgical approach. Curr Opin Oncol. 2014;26(6):615–21. doi:10.1097/cco.0000000000000120.

    Article  CAS  PubMed  Google Scholar 

  2. Hervey-Jumper SL, Berger MS. Role of surgical resection in low- and high-grade gliomas. Curr Treat Options Neurol. 2014;16(4):284. doi:10.1007/s11940-014-0284-7.

    Article  PubMed  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. doi:10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  4. Buckner J, Giannini C, Eckel-Passow J, Lachance D, Parney I, Laack N, et al. Management of diffuse low-grade gliomas in adults—use of molecular diagnostics. Nat Rev Neurol. 2017;13(6):340–51. doi:10.1038/nrneurol.2017.54.

    Article  CAS  PubMed  Google Scholar 

  5. Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg. 2016;124(4):977–88. doi:10.3171/2015.5.jns142087.

    Article  PubMed  Google Scholar 

  6. Pessina F, Navarria P, Cozzi L, Ascolese AM, Simonelli M, Santoro A, et al. Value of surgical resection in patients with newly diagnosed grade III glioma treated in a multimodal approach: surgery, chemotherapy and radiotherapy. Ann Surg Oncol. 2016;23(9):3040–6. doi:10.1245/s10434-016-5222-3.

    Article  PubMed  Google Scholar 

  7. Snyder LA, Wolf AB, Oppenlander ME, Bina R, Wilson JR, Ashby L, et al. The impact of extent of resection on malignant transformation of pure oligodendrogliomas. J Neurosurg. 2014;120(2):309–14. doi:10.3171/2013.10.jns13368.

    Article  PubMed  Google Scholar 

  8. Marko NF, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE. Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol. 2014;32(8):774–82. doi:10.1200/jco.2013.51.8886.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12. doi:10.1016/S0006-3495(93)81441-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–7. doi:10.1038/35084005.

    Article  CAS  PubMed  Google Scholar 

  11. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of magnetic resonance Series B. 1996;111(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  12. Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed. 2002;15(7–8):468–80. doi:10.1002/nbm.781.

    Article  PubMed  Google Scholar 

  13. Bick AS, Mayer A, Levin N. From research to clinical practice: implementation of functional magnetic imaging and white matter tractography in the clinical environment. J Neurol Sci. 2012;312(1–2):158–65. doi:10.1016/j.jns.2011.07.040.

    Article  PubMed  Google Scholar 

  14. Dimou S, Battisti RA, Hermens DF, Lagopoulos J. A systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev. 2013;36(2):205–214; discussion 14. doi:10.1007/s10143-012-0436-8.

    Article  CAS  PubMed  Google Scholar 

  15. Gabriel M, Brennan NP, Peck KK, Holodny AI. Blood oxygen level dependent functional magnetic resonance imaging for presurgical planning. Neuroimaging Clin N Am. 2014;24(4):557–71. doi:10.1016/j.nic.2014.07.003.

    Article  PubMed  Google Scholar 

  16. •• Tyndall AJ, Reinhardt J, Tronnier V, Mariani L, Stippich C. Presurgical motor, somatosensory and language fMRI: technical feasibility and limitations in 491 patients over 13 years. Eur Radiol. 2017;27(1):267–78. doi:10.1007/s00330-016-4369-4. This work provides an up-to-date overview of the clinical implementation of presurgical motor, somatosensory and language fMRI in a large cohort of patients, analyzing the long-term feasibility and limitations of this technique and reporting success rates of task performance and BOLD activations

    Article  PubMed  Google Scholar 

  17. • Tieleman A, Deblaere K, Van Roost D, Van Damme O, Achten E. Preoperative fMRI in tumour surgery. Eur Radiol. 2009;19(10):2523–34. doi:10.1007/s00330-009-1429-z. This review summarizes several practical aspects associated with fMRI for motor and language function as well as with presurgical fMRI and its validation. Important pitfalls and limitations that warrant careful interpretations of the fMRI results are finally highlighted

    Article  PubMed  Google Scholar 

  18. Mueller WM, Yetkin FZ, Hammeke TA, Morris GL 3rd, Swanson SJ, Reichert K, et al. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery. 1996;39(3):515–20. discussion 20-1

    Article  CAS  PubMed  Google Scholar 

  19. Krings T, Reul J, Spetzger U, Klusmann A, Roessler F, Gilsbach JM, et al. Functional magnetic resonance mapping of sensory motor cortex for image-guided neurosurgical intervention. Acta Neurochir. 1998;140(3):215–22.

    Article  CAS  PubMed  Google Scholar 

  20. Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, et al. Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging. Neurosci Lett. 1999;277(1):25–8.

    Article  CAS  PubMed  Google Scholar 

  21. Majos A, Tybor K, Stefanczyk L, Goraj B. Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol. 2005;15(6):1148–58. doi:10.1007/s00330-004-2565-0.

    Article  PubMed  Google Scholar 

  22. Lee CC, Ward HA, Sharbrough FW, Meyer FB, Marsh WR, Raffel C, et al. Assessment of functional MR imaging in neurosurgical planning. AJNR Am J Neuroradiol. 1999;20(8):1511–9.

    CAS  PubMed  Google Scholar 

  23. Ternovoi SK, Sinitsyn VE, Evzikov GY, Morozov SP, Kholodov BV. Localization of the motor and speech zones of the cerebral cortex by functional magnetic resonance tomography. Neurosci Behav Physiol. 2004;34(5):431–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lehericy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, et al. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg. 2000;92(4):589–98. doi:10.3171/jns.2000.92.4.0589.

    Article  CAS  PubMed  Google Scholar 

  25. Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, et al. Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology. 2008;248(2):579–89. doi:10.1148/radiol.2482071214.

    Article  PubMed  Google Scholar 

  26. Bartos R, Jech R, Vymazal J, Petrovicky P, Vachata P, Hejcl A, et al. Validity of primary motor area localization with fMRI versus electric cortical stimulation: a comparative study. Acta Neurochir. 2009;151(9):1071–80. doi:10.1007/s00701-009-0368-4.

    Article  PubMed  Google Scholar 

  27. Meier MP, Ilmberger J, Fesl G, Ruge MI. Validation of functional motor and language MRI with direct cortical stimulation. Acta Neurochir. 2013;155(4):675–83. doi:10.1007/s00701-013-1624-1.

    Article  CAS  PubMed  Google Scholar 

  28. Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, et al. Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival. Clinical article J Neurosurg. 2011;114(3):566–73. doi:10.3171/2010.6.jns091246.

    Article  PubMed  Google Scholar 

  29. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):2559–65. doi:10.1200/jco.2011.38.4818.

    Article  PubMed  Google Scholar 

  30. Desmurget M, Song Z, Mottolese C, Sirigu A. Re-establishing the merits of electrical brain stimulation. Trends Cogn Sci. 2013;17(9):442–9. doi:10.1016/j.tics.2013.07.002.

    Article  PubMed  Google Scholar 

  31. Fraga de Abreu VH, Peck KK, Petrovich-Brennan NM, Woo KM, Holodny AI. Brain tumors: the influence of tumor type and routine MR imaging characteristics at BOLD functional MR imaging in the primary motor gyrus. Radiology. 2016;281(3):876–83. doi:10.1148/radiol.2016151951.

    Article  PubMed  Google Scholar 

  32. Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery. 2003;52(6):1335–45. discussion 45-7

    Article  PubMed  Google Scholar 

  33. Bookheimer S. Pre-surgical language mapping with functional magnetic resonance imaging. Neuropsychol Rev. 2007;17(2):145–55. doi:10.1007/s11065-007-9026-x.

    Article  PubMed  Google Scholar 

  34. •• Bizzi A. Presurgical mapping of verbal language in brain tumors with functional MR imaging and MR tractography. Neuroimaging Clin N Am. 2009;19(4):573–96. doi:10.1016/j.nic.2009.08.010. This comprehensive review described different relevant aspect of language function for presurgical mapping. Starting from the key anatomical and functional features of language, contribution of advanced MRI techniques along with their pitfalls are illustrated. Comparison with cortical localization by intraoperative direct electrical stimulation mapping is discussed

    Article  PubMed  Google Scholar 

  35. Binder JR, Swanson SJ, Hammeke TA, Sabsevitz DS. A comparison of five fMRI protocols for mapping speech comprehension systems. Epilepsia. 2008;49(12):1980–97. doi:10.1111/j.1528-1167.2008.01683.x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ojemann GA. Individual variability in cortical localization of language. J Neurosurg. 1979;50(2):164–9. doi:10.3171/jns.1979.50.2.0164.

    Article  CAS  PubMed  Google Scholar 

  37. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71(3):316–26. doi:10.3171/jns.1989.71.3.0316.

    Article  CAS  PubMed  Google Scholar 

  38. Polczynska MM, Japardi K, Bookheimer SY. Lateralizing language function with pre-operative functional magnetic resonance imaging in early proficient bilingual patients. Brain Lang. 2017;170:1–11. doi:10.1016/j.bandl.2017.03.002.

    Article  PubMed  Google Scholar 

  39. Rofes A, Miceli G. Language mapping with verbs and sentences in awake surgery: a review. Neuropsychol Rev. 2014;24(2):185–99. doi:10.1007/s11065-014-9258-5.

    Article  PubMed  Google Scholar 

  40. Dym RJ, Burns J, Freeman K, Lipton ML. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology. 2011;261(2):446–55. doi:10.1148/radiol.11101344.

    Article  PubMed  Google Scholar 

  41. Petrella JR, Shah LM, Harris KM, Friedman AH, George TM, Sampson JH, et al. Preoperative functional MR imaging localization of language and motor areas: effect on therapeutic decision making in patients with potentially resectable brain tumors. Radiology. 2006;240(3):793–802. doi:10.1148/radiol.2403051153.

    Article  PubMed  Google Scholar 

  42. Stippich C, Rapps N, Dreyhaupt J, Durst A, Kress B, Nennig E, et al. Localizing and lateralizing language in patients with brain tumors: feasibility of routine preoperative functional MR imaging in 81 consecutive patients. Radiology. 2007;243(3):828–36. doi:10.1148/radiol.2433060068.

    Article  PubMed  Google Scholar 

  43. • Giussani C, Roux FE, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66(1):113–20. doi:10.1227/01.NEU.0000360392.15450.C9. This review provides a summary of language fMRI findings and cortical DES correlation studies, trying to evaluate the reliability and effectiveness of fMRI technique

    Article  PubMed  Google Scholar 

  44. •• Kuchcinski G, Mellerio C, Pallud J, Dezamis E, Turc G, Rigaux-Viode O, et al. Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology. 2015;84(6):560–8. doi:10.1212/WNL.0000000000001226. This study directly compare preoperative fMRI with intra-operative direct electrical stimulation findings, providing accuracy correlation between fMRI and gold-standard validation method, according to the type of glioma beneath, and remarking the limitations of preoperative fMRI when used as preoperative language mapping evaluation

    Article  CAS  PubMed  Google Scholar 

  45. Morrison MA, Tam F, Garavaglia MM, Hare GM, Cusimano MD, Schweizer TA, et al. Sources of variation influencing concordance between functional MRI and direct cortical stimulation in brain tumor surgery. Front Neurosci. 2016;10:461. doi:10.3389/fnins.2016.00461.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Berntsen EM, Gulati S, Solheim O, Kvistad KA, Torp SH, Selbekk T, et al. Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery. 2010;67(2):251–64.

    Article  PubMed  Google Scholar 

  47. Haberg A, Kvistad KA, Unsgard G, Haraldseth O. Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery. 2004;54(4):902–14. discussion 14-5

    Article  PubMed  Google Scholar 

  48. Krishnan R, Raabe A, Hattingen E, Szelenyi A, Yahya H, Hermann E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904–14. discusssion 14-5

    Article  PubMed  Google Scholar 

  49. Holodny AI, Schulder M, Liu WC, Wolko J, Maldjian JA, Kalnin AJ. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image-guided neurosurgery. AJNR Am J Neuroradiol. 2000;21(8):1415–22.

    CAS  PubMed  Google Scholar 

  50. Pillai JJ, Zaca D. Comparison of BOLD cerebrovascular reactivity mapping and DSC MR perfusion imaging for prediction of neurovascular uncoupling potential in brain tumors. Technology in cancer research & treatment. 2012;11(4):361–74. doi:10.7785/tcrt.2012.500284.

    Article  Google Scholar 

  51. Zaca D, Jovicich J, Nadar SR, Voyvodic JT, Pillai JJ. Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI. J Magn Reson Imaging. 2014;40(2):383–90. doi:10.1002/jmri.24406.

    Article  PubMed  Google Scholar 

  52. Ulmer JL, Krouwer HG, Mueller WM, Ugurel MS, Kocak M, Mark LP. Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. AJNR Am J Neuroradiol. 2003;24(2):213–7.

    PubMed  Google Scholar 

  53. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20(8):519–34. doi:10.1016/j.euroneuro.2010.03.008.

    Article  PubMed  CAS  Google Scholar 

  54. Pujol J, Conesa G, Deus J, Lopez-Obarrio L, Isamat F, Capdevila A. Clinical application of functional magnetic resonance imaging in presurgical identification of the central sulcus. J Neurosurg. 1998;88(5):863–9. doi:10.3171/jns.1998.88.5.0863.

    Article  CAS  PubMed  Google Scholar 

  55. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360(1457):1001–13. doi:10.1098/rstb.2005.1634.

    Article  Google Scholar 

  56. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 2006;103(37):13848–53. doi:10.1073/pnas.0601417103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11. doi:10.1038/nrn2201.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang D, Johnston JM, Fox MD, Leuthardt EC, Grubb RL, Chicoine MR, et al. Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with functional magnetic resonance imaging: initial experience. Neurosurgery. 2009;65(6 Suppl):226–36. doi:10.1227/01.NEU.0000350868.95634.CA.

    PubMed  PubMed Central  Google Scholar 

  59. Kokkonen SM, Nikkinen J, Remes J, Kantola J, Starck T, Haapea M, et al. Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magn Reson Imaging. 2009;27(6):733–40. doi:10.1016/j.mri.2008.11.002.

    Article  PubMed  Google Scholar 

  60. Tanaka N, Stufflebeam SM. Presurgical mapping of the language network using resting-state functional connectivity. Top Magn Reson Imaging. 2016;25(1):19–24. doi:10.1097/rmr.0000000000000073.

    Article  PubMed  PubMed Central  Google Scholar 

  61. •• Lee MH, Miller-Thomas MM, Benzinger TL, Marcus DS, Hacker CD, Leuthardt EC, et al. Clinical resting-state fMRI in the preoperative setting: are we ready for prime time? Top Magn Reson Imaging. 2016;25(1):11–8. doi:10.1097/rmr.0000000000000075. This article provides a clear overview of rs-fMRI brackground, data processing and resting state networks identification, suggesting the usefnulness of this technique as a potential clinical tool for presurgical mapping in patients with tumors from a neuroradiological and neurosurgical point of view

    Article  PubMed  Google Scholar 

  62. Hou BL, Bhatia S, Carpenter JS. Quantitative comparisons on hand motor functional areas determined by resting state and task BOLD fMRI and anatomical MRI for pre-surgical planning of patients with brain tumors. Neuroimage Clin. 2016;11:378–87. doi:10.1016/j.nicl.2016.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cochereau J, Deverdun J, Herbet G, Charroud C, Boyer A, Moritz-Gasser S, et al. Comparison between resting state fMRI networks and responsive cortical stimulations in glioma patients. Hum Brain Mapp. 2016;37(11):3721–32. doi:10.1002/hbm.23270.

    Article  PubMed  Google Scholar 

  64. Qiu TM, Yan CG, Tang WJ, Wu JS, Zhuang DX, Yao CJ, et al. Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation. Acta Neurochir. 2014;156(12):2295–302. doi:10.1007/s00701-014-2236-0.

    Article  PubMed  Google Scholar 

  65. Boyer A, Deverdun J, Duffau H, Le Bars E, Molino F, Menjot de Champfleur N, et al. Longitudinal changes in cerebellar and thalamic spontaneous neuronal activity after wide-awake surgery of brain tumors: a resting-state fMRI study. Cerebellum (London, England). 2016;15(4):451–65. doi:10.1007/s12311-015-0709-1.

    Article  CAS  Google Scholar 

  66. Niu C, Zhang M, Min Z, Rana N, Zhang Q, Liu X, et al. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study. PLoS One. 2014;9(5):e96850. doi:10.1371/journal.pone.0096850.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mallela AN, Peck KK, Petrovich-Brennan NM, Zhang Z, Lou W, Holodny AI. Altered resting-state functional connectivity in the hand motor network in glioma patients. Brain Connect. 2016; doi:10.1089/brain.2016.0432.

  68. Robinson SD, Schopf V, Cardoso P, Geissler A, Fischmeister FP, Wurnig M, et al. Applying independent component analysis to clinical FMRI at 7 t. Front Hum Neurosci. 2013;7:496. doi:10.3389/fnhum.2013.00496.

    PubMed  PubMed Central  Google Scholar 

  69. Rosazza C, Aquino D, D'Incerti L, Cordella R, Andronache A, Zaca D, et al. Preoperative mapping of the sensorimotor cortex: comparative assessment of task-based and resting-state FMRI. PLoS One. 2014;9(6):e98860. doi:10.1371/journal.pone.0098860.

    Article  PubMed  PubMed Central  Google Scholar 

  70. • Schneider FC, Pailler M, Faillenot I, Vassal F, Guyotat J, Barral FG, et al. Presurgical assessment of the sensorimotor cortex using resting-state fMRI. AJNR Am J Neuroradiol. 2016;37(1):101–7. doi:10.3174/ajnr.A4472. This study investigates sensorimotor network in patients with brain tumors using rs-fMRI. The authors compare rs-fMRI data with task-based fMRI activations for hand, face and foot, showing a high sensitivity of rs-fMRI for localizing motor areas and a good spatial correspondence between the two approaches

    Article  CAS  PubMed  Google Scholar 

  71. Vassal M, Charroud C, Deverdun J, Le Bars E, Molino F, Bonnetblanc F, et al. Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area. J Neurosurg. 2017;126(4):1181–90. doi:10.3171/2016.4.jns152484.

    Article  PubMed  Google Scholar 

  72. Yahyavi-Firouz-Abadi N, Pillai JJ, Lindquist MA, Calhoun VD, Agarwal S, Airan RD, et al. Presurgical brain mapping of the ventral somatomotor network in patients with brain tumors using resting-state fMRI. AJNR Am J Neuroradiol. 2017;38(5):1006–12. doi:10.3174/ajnr.A5132.

    Article  CAS  PubMed  Google Scholar 

  73. Sair HI, Yahyavi-Firouz-Abadi N, Calhoun VD, Airan RD, Agarwal S, Intrapiromkul J, et al. Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI. Hum Brain Mapp. 2016;37(3):913–23. doi:10.1002/hbm.23075.

    Article  PubMed  Google Scholar 

  74. Smitha KA, Arun KM, Rajesh PG, Thomas B, Kesavadas C. Resting-state seed-based analysis: an alternative to task-based language fMRI and its laterality index. AJNR Am J Neuroradiol. 2017; doi:10.3174/ajnr.A5169.

  75. Tie Y, Rigolo L, Norton IH, Huang RY, Wu W, Orringer D, et al. Defining language networks from resting-state fMRI for surgical planning—a feasibility study. Hum Brain Mapp. 2014;35(3):1018–30. doi:10.1002/hbm.22231.

    Article  PubMed  Google Scholar 

  76. Zhu L, Fan Y, Zou Q, Wang J, Gao JH, Niu Z. Temporal reliability and lateralization of the resting-state language network. PLoS One. 2014;9(1):e85880. doi:10.1371/journal.pone.0085880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Esposito R, Mattei PA, Briganti C, Romani GL, Tartaro A, Caulo M. Modifications of default-mode network connectivity in patients with cerebral glioma. PLoS One. 2012;7(7):e40231. doi:10.1371/journal.pone.0040231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang H, Shi Y, Yao C, Tang W, Yao D, Zhang C, et al. Alteration of the intra- and cross- hemisphere posterior default mode network in frontal lobe glioma patients. Sci Rep. 2016;6:26972. doi:10.1038/srep26972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Xu H, Ding S, Hu X, Yang K, Xiao C, Zou Y, et al. Reduced efficiency of functional brain network underlying intellectual decline in patients with low-grade glioma. Neurosci Lett. 2013;543:27–31. doi:10.1016/j.neulet.2013.02.062.

    Article  CAS  PubMed  Google Scholar 

  80. Ives-Deliperi VL, Butler JT. Functional mapping in pediatric epilepsy surgical candidates: functional magnetic resonance imaging under sedation with chloral hydrate. Pediatr Neurol. 2015;53(6):478–84. doi:10.1016/j.pediatrneurol.2015.08.015.

    Article  PubMed  Google Scholar 

  81. Vadivelu S, Wolf VL, Bollo RJ, Wilfong A, Curry DJ. Resting-state functional MRI in pediatric epilepsy surgery. Pediatr Neurosurg. 2013;49(5):261–73. doi:10.1159/000363605.

    Article  PubMed  Google Scholar 

  82. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25(3):356–69.

    PubMed  Google Scholar 

  83. Romano A, D'Andrea G, Minniti G, Mastronardi L, Ferrante L, Fantozzi LM, et al. Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol. 2009;19(12):2798–808. doi:10.1007/s00330-009-1483-6.

    Article  CAS  PubMed  Google Scholar 

  84. Ulmer JL, Klein AP, Mueller WM, DeYoe EA, Mark LP. Preoperative diffusion tensor imaging: improving neurosurgical outcomes in brain tumor patients. Neuroimaging Clin N Am. 2014;24(4):599–617. doi:10.1016/j.nic.2014.08.002.

    Article  PubMed  Google Scholar 

  85. Wu JS, Zhou LF, Tang WJ, Mao Y, Hu J, Song YY, et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935–948; discussion 48-9. doi:10.1227/01.neu.0000303189.80049.ab.

    Article  PubMed  Google Scholar 

  86. Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. NeuroImage. 2006;30(4):1219–29. doi:10.1016/j.neuroimage.2005.11.001.

    Article  PubMed  Google Scholar 

  87. Bello L, Gambini A, Castellano A, Carrabba G, Acerbi F, Fava E, et al. Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage. 2008;39(1):369–82. doi:10.1016/j.neuroimage.2007.08.031.

    Article  PubMed  Google Scholar 

  88. Castellano A, Bello L, Michelozzi C, Gallucci M, Fava E, Iadanza A, et al. Role of diffusion tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro-Oncology. 2012;14(2):192–202. doi:10.1093/neuonc/nor188.

    Article  PubMed  Google Scholar 

  89. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage. 2002;17(1):77–94.

    Article  PubMed  Google Scholar 

  90. Bozzao A, Romano A, Angelini A, D'Andrea G, Calabria LF, Coppola V, et al. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation. Eur Radiol. 2010;20(10):2475–81.

    Article  PubMed  Google Scholar 

  91. Vallar G, Bello L, Bricolo E, Castellano A, Casarotti A, Falini A, et al. Cerebral correlates of visuospatial neglect: a direct cerebral stimulation study. Hum Brain Mapp. 2014;35(4):1334–50. doi:10.1002/hbm.22257.

    Article  PubMed  Google Scholar 

  92. Kamada K, Todo T, Masutani Y, Aoki S, Ino K, Takano T, et al. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg. 2005;102(4):664–72. doi:10.3171/jns.2005.102.4.0664.

    Article  PubMed  Google Scholar 

  93. Berman JI, Berger MS, Mukherjee P, Henry RG. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101(1):66–72. doi:10.3171/jns.2004.101.1.0066.

    Article  PubMed  Google Scholar 

  94. Henry RG, Berman JI, Nagarajan SS, Mukherjee P, Berger MS. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. NeuroImage. 2004;21(2):616–22. doi:10.1016/j.neuroimage.2003.09.047.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros M, et al. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg. 2010;112(3):503–11. doi:10.3171/2009.8.jns09558.

    Article  PubMed  Google Scholar 

  96. Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, et al. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurgery. 2012;70(2):283–93. discussion 94

    Article  PubMed  Google Scholar 

  97. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34(11):2747–66. doi:10.1002/hbm.22099.

    Article  PubMed  Google Scholar 

  98. Dell'Acqua F, Simmons A, Williams SC, Catani M. Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum Brain Mapp. 2013;34(10):2464–83. doi:10.1002/hbm.22080.

    Article  PubMed  Google Scholar 

  99. Radmanesh A, Zamani AA, Whalen S, Tie Y, Suarez RO, Golby AJ. Comparison of seeding methods for visualization of the corticospinal tracts using single tensor tractography. Clin Neurol Neurosurg. 2015;129:44–9. doi:10.1016/j.clineuro.2014.11.021.

    Article  PubMed  Google Scholar 

  100. Weiss Lucas C, Tursunova I, Neuschmelting V, Nettekoven C, Oros-Peusquens AM, Stoffels G, et al. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. Neuroimage Clin. 2017;13:297–309. doi:10.1016/j.nicl.2016.11.022.

    Article  PubMed  Google Scholar 

  101. Weiss C, Tursunova I, Neuschmelting V, Lockau H, Nettekoven C, Oros-Peusquens AM, et al. Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. Neuroimage Clin. 2015;7:424–37. doi:10.1016/j.nicl.2015.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mormina E, Longo M, Arrigo A, Alafaci C, Tomasello F, Calamuneri A, et al. MRI tractography of corticospinal tract and arcuate fasciculus in high-grade gliomas performed by constrained spherical deconvolution: qualitative and quantitative analysis. AJNR Am J Neuroradiol. 2015;36(10):1853–8. doi:10.3174/ajnr.A4368.

    Article  CAS  PubMed  Google Scholar 

  103. Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, et al. White matter fiber tractography: why we need to move beyond DTI. J Neurosurg. 2013;118(6):1367–77. doi:10.3171/2013.2.jns121294.

    Article  PubMed  Google Scholar 

  104. Bucci M, Mandelli ML, Berman JI, Amirbekian B, Nguyen C, Berger MS, et al. Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods. Neuroimage Clin. 2013;3:361–8. doi:10.1016/j.nicl.2013.08.008.

    Article  PubMed  PubMed Central  Google Scholar 

  105. • Caverzasi E, Hervey-Jumper SL, Jordan KM, Lobach IV, Li J, Panara V, et al. Identifying preoperative language tracts and predicting postoperative functional recovery using HARDI q-ball fiber tractography in patients with gliomas. J Neurosurg. 2016;125(1):33–45. doi:10.3171/2015.6.jns142203. One of the first studies demonstrating the successful, wide clinical implementation of HARDI q-ball tractography in presurgical planning for language pathways in brain tumor patients

    Article  PubMed  Google Scholar 

  106. Kuhnt D, Bauer MH, Sommer J, Merhof D, Nimsky C. Optic radiation fiber tractography in glioma patients based on high angular resolution diffusion imaging with compressed sensing compared with diffusion tensor imaging - initial experience. PLoS One. 2013;8(7):e70973. doi:10.1371/journal.pone.0070973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mormina E, Arrigo A, Calamuneri A, Alafaci C, Tomasello F, Morabito R, et al. Optic radiations evaluation in patients affected by high-grade gliomas: a side-by-side constrained spherical deconvolution and diffusion tensor imaging study. Neuroradiology. 2016;58(11):1067–75. doi:10.1007/s00234-016-1732-8.

    Article  PubMed  Google Scholar 

  108. Castellano A, Falini A. Progress in neuro-imaging of brain tumors. Curr Opin Oncol. 2016;28(6):484–93. doi:10.1097/cco.0000000000000328.

    Article  CAS  PubMed  Google Scholar 

  109. Riva M, Casaceli G, Castellano A, Fava E, Falini A, Bello L. Beautiful eyes guiding powerful hands—the role of intraoperative imaging techniques in the surgical management of gliomas. European Neurological Review. 2011;6(3):208–12.

    Article  Google Scholar 

  110. Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbeck’s Arch Surg. 2013;398(4):501–14. doi:10.1007/s00423-013-1059-4.

    Article  Google Scholar 

  111. Bello L, Castellano A, Fava E, Casaceli G, Riva M, Falini A. Preoperative diffusion tensor imaging: contribution to surgical planning and validation by intraoperative electrostimulation. Brain mapping. From neural basis of cognition to surgical applications. Wien, New York: SpringerWienNewYork; 2011. p. 263–75.

    Google Scholar 

  112. Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. The Cochrane database of systematic reviews. 2014(1):Cd009685. doi:10.1002/14651858.CD009685.pub2.

  113. Stieglitz LH, Fichtner J, Andres R, Schucht P, Krahenbuhl AK, Raabe A, et al. The silent loss of neuronavigation accuracy: a systematic retrospective analysis of factors influencing the mismatch of frameless stereotactic systems in cranial neurosurgery. Neurosurgery. 2013;72(5):796–807. doi:10.1227/NEU.0b013e318287072d.

    Article  PubMed  Google Scholar 

  114. •• Gerard IJ, Kersten-Oertel M, Petrecca K, Sirhan D, Hall JA, Collins DL. Brain shift in neuronavigation of brain tumors: a review. Med Image Anal. 2017;35:403–20. doi:10.1016/j.media.2016.08.007. This is a thorough review of one of the main factors limiting the accuracy of the translational use of a preoperative MRI dataset into the operative stage. Studies investigating, quantifying and exploring strategies to manage the brainshift are reported and discussed, offering a wide overview of the main critical issues in the effort to enhance a stable reliability in registering the image space into the patient space in order to improve the clinical performance during neurosurgery

    Article  PubMed  Google Scholar 

  115. Riva M, Hennersperger C, Milletari F, Katouzian A, Pessina F, Gutierrez-Becker B, et al. 3D intra-operative ultrasound and MR image guidance: pursuing an ultrasound-based management of brainshift to enhance neuronavigation. Int J Comput Assist Radiol Surg. 2017; doi:10.1007/s11548-017-1578-5.

  116. Kristo G, Raemaekers M, Rutten GJ, de Gelder B, Ramsey NF. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery. Cortex. 2015;64:235–48. doi:10.1016/j.cortex.2014.11.002.

    Article  PubMed  Google Scholar 

  117. van Geemen K, Herbet G, Moritz-Gasser S, Duffau H. Limited plastic potential of the left ventral premotor cortex in speech articulation: evidence from intraoperative awake mapping in glioma patients. Hum Brain Mapp. 2014;35(4):1587–96. doi:10.1002/hbm.22275.

    Article  PubMed  Google Scholar 

  118. Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. 2016;124(5):1460–9. doi:10.3171/2015.5.jns142833.

    Article  PubMed  Google Scholar 

  119. Robles SG, Gatignol P, Lehericy S, Duffau H. Long-term brain plasticity allowing a multistage surgical approach to World Health Organization Grade II gliomas in eloquent areas. J Neurosurg. 2008;109(4):615–24. doi:10.3171/JNS/2008/109/10/0615.

    Article  PubMed  Google Scholar 

  120. Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases: clinical article. J Neurosurg. 2013;118(6):1157–68. doi:10.3171/2013.1.jns121.

    Article  PubMed  Google Scholar 

  121. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343(6167):189–93. doi:10.1126/science.1239947.

    Article  CAS  PubMed  Google Scholar 

  122. Castellano A, Donativi M, Ruda R, De Nunzio G, Riva M, Iadanza A, et al. Evaluation of low-grade glioma structural changes after chemotherapy using DTI-based histogram analysis and functional diffusion maps. Eur Radiol. 2016;26(5):1263–73. doi:10.1007/s00330-015-3934-6.

    Article  PubMed  Google Scholar 

  123. • Rivera-Rivera PA, Rios-Lago M, Sanchez-Casarrubios S, Salazar O, Yus M, Gonzalez-Hidalgo M, et al. Cortical plasticity catalyzed by prehabilitation enables extensive resection of brain tumors in eloquent areas. J Neurosurg. 2017;126(4):1323–33. doi:10.3171/2016.2.jns152485. Although a very small cohort is studied making the findings preliminary, this paper applied a novel strategy to enhance brain plasticity. This field could be a potential use in the near future of the fMRI techniques to properly describe plasticity during the course of the disease, being aware of the limitations of its application when dealing with gliomas

    Article  PubMed  Google Scholar 

  124. Desmurget M, Bonnetblanc F, Duffau H. Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain. 2007;130(Pt 4):898–914. doi:10.1093/brain/awl300.

    PubMed  Google Scholar 

  125. Voets NL, Adcock JE, Flitney DE, Behrens TE, Hart Y, Stacey R, et al. Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain. 2006;129(Pt 3):754–66. doi:10.1093/brain/awh679.

    Article  CAS  PubMed  Google Scholar 

  126. Sarubbo S, Le Bars E, Moritz-Gasser S, Duffau H. Complete recovery after surgical resection of left Wernicke’s area in awake patient: a brain stimulation and functional MRI study. Neurosurg Rev. 2012;35(2):287–292; discussion 92. doi:10.1007/s10143-011-0351-4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Valeria Blasi and Dr. Luisa Altabella for the useful discussions on the topics of this review. We also would like to thank Prof. Roland G. Henry and the colleagues of the Departments of Neurology and Radiology and Biomedical Imaging and Graduate Program in Bioengineering, University of California, Berkeley/University of California, San Francisco, CA, for kindly allowing us to use the Dipy (Diffusion imaging in Python) software for processing of HARDI tractography data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Castellano MD, PhD.

Ethics declarations

Conflict of Interest

Antonella Castellano, Sara Cirillo, Lorenzo Bello, Marco Riva, and Andrea Falini declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellano, A., Cirillo, S., Bello, L. et al. Functional MRI for Surgery of Gliomas. Curr Treat Options Neurol 19, 34 (2017). https://doi.org/10.1007/s11940-017-0469-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-017-0469-y

Keywords

Navigation