Skip to main content

Advertisement

Log in

Late Cardiotoxicity: Issues for Childhood Cancer Survivors

  • Cardio-oncology (M Fradley, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Cardiovascular-related morbidity is a substantial health burden in survivors of childhood cancers. This burden is gaining importance as this population increases through advancements in therapy. Anthracyclines are commonly used agents that are known to cause late cardiotoxicity. Cardiotoxicity is also increased by other risk factors, such as concurrent radio- or chemotherapy, younger age at diagnosis, female sex, comorbidities, lifestyle factors, and genetic factors, such as hemochromatosis gene mutations. Treatment of late cardiotoxicity depends on the type of cardiac abnormalities and consists of pharmacotherapy, mechanical support, or heart transplantation. Because cardiotoxicity is progressive and often irreversible, prevention, risk reduction, and early detection are of utmost importance. The cardioprotectant dexrazoxane decreases anthracycline cardiotoxicity. Screening for other risk factors at the time of diagnosis may identify risk that when present, if used to tailor therapy, may reduce the severity of cardiac damage. The effects of exercise and other lifestyle changes in reducing the cardiovascular diseases in cancer survivors are unclear. However, it may be beneficial to encourage survivors to engage in physical activity tailored to survivor medical status, but with close monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. American Cancer Society. Cancer facts & figures 2013. Atlanta: American Cancer Society; 2013.

    Google Scholar 

  2. Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer. 2008;112:416–32.

    Article  PubMed  Google Scholar 

  3. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, et al. SEER Cancer Statistics Review, 1975–2010, National Cancer Institute. Bethesda, MD. http://seer.cancer.gov/csr/1975_2010/, based on November 2012 SEER data submission, posted to the SEER web site, April 2013; accessed October15th, 2015.

  4. Mariotto AB, Rowland JH, Yabroff KR, Scoppa S, Hachey M, Ries L, et al. Long-term survivors of childhood cancers in the United States. Cancer Epidemiol Biomarkers Prev. 2009;18:1033–40.

    Article  PubMed  Google Scholar 

  5. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355:1572–82.

    Article  CAS  PubMed  Google Scholar 

  6. Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28:1308–15.

    Article  PubMed  Google Scholar 

  7. Mertens AC, Liu Q, Neglia JP, Wasilewski K, Leisenring W, Armstrong GT, et al. Cause-specific late mortality among 5-year survivors of childhood cancer: the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2008;100:1368–79.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Monoe SM, Gelber RD, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23:2629–36.

    Article  CAS  PubMed  Google Scholar 

  9. Kremer LC, van der Pal HJ, Offringa M, VanDalen EC, Voute PA. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol. 2002;13:819–29.

    Article  CAS  PubMed  Google Scholar 

  10. Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Aitby P, Stovall M. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324:808–15.

    Article  CAS  PubMed  Google Scholar 

  12. Adams MJ, Lipshultz SE. Pathophysiology of anthracycline- and radiation associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer. 2005;44:600–6.

    Article  PubMed  Google Scholar 

  13. Ferrans VJ, Sanchez JA, Herman EH. Pathologic anatomy of animal models of anthracycline-induced cardiotoxicity. In: Muggia FM, Green MD, Speyer JL, editors. Cancer treatment and the heart. Baltimore, MD: Johns Hopkins Press; 1992. p. 89–111.

    Google Scholar 

  14. Thompson KL, Rosenzweig BA, Zhang J, Knapton AD, Honchel R, Lipshultz SE, et al. Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol. 2009;66:303–14.

    Article  PubMed  CAS  Google Scholar 

  15. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97:2869–79.

    Article  CAS  PubMed  Google Scholar 

  16. Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997;15:1544–52.

    CAS  PubMed  Google Scholar 

  17. Nysom K, Holm K, Lipsitz SR, Mone SM, Colan SD, Lipshultz SE, et al. Relationship between cumulative anthracycline dose and late cardiotoxicity in childhood acute lymphoblastic leukemia. J Clin Oncol. 1998;16:545–50.

    CAS  PubMed  Google Scholar 

  18. Kremer LC, van Dalen EC, Offringa M, Ottenkamp J, Voute PA. Anthracycline-induced clinical heart failure in a cohort of 607 children: long-term follow-up study. J Clin Oncol. 2001;19:191–6.

    CAS  PubMed  Google Scholar 

  19. Trachtenberg BH, Landy DC, Franco VI, Henkel JM, Pearson EJ, Miller TL, et al. Anthracycline-associated cardiotoxicity in survivors of childhood cancer. Pediatr Cardiol. 2011;32:342–53.

    Article  PubMed  Google Scholar 

  20. Boivin JF, Hutchison GB, Lubin JH, Mauch P. Coronary artery disease mortality in patients treated for Hodgkin’s disease. Cancer. 1992;69:1241–7.

    Article  CAS  PubMed  Google Scholar 

  21. Adams MJ, Lipsitz SR, Colan SD, Tarbell NJ, Treves ST, Diller L, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22:3139–48.

    Article  PubMed  Google Scholar 

  22. Adams MJ, Ng AK, Mauch P, Lipsitz SR, Winters P, Lipshultz SE. Peak oxygen consumption in Hodgkin’s lymphoma survivors treated with mediastinal radiotherapy as a predictor of quality of life 5 years later. Prog Pediat Cardiol. 2015;39:93–8.

    Article  Google Scholar 

  23. Adão R, de Keulenaer G, Leite-Moreira A, Bras-Silva C. A cardiotoxicity associated with cancer therapy: pathophysiology and prevention. Rev Portug Cardiol (English ed). 2013;32:395–409.

    Article  Google Scholar 

  24. Dillenburg RF, Nathan P, Mertens L. Educational paper: decreasing the burden of cardiovascular disease in childhood cancer survivors: an update for the pediatrician. Eur J Pediatr. 2013;172:1149–60.

    Article  PubMed  Google Scholar 

  25. Landy DC, Miller TL, Lipsitz SR, Lopez-Mitnik G, Hinkle AS, Lipshultz SE, et al. Cranial irradiation as an additional risk factor for anthracycline cardiotoxicity in childhood cancer survivors: an analysis from the cardiac risk factors in childhood cancer survivors study. Pediatr Cardiol. 2013;34(4):826–34.

    Article  PubMed  Google Scholar 

  26. Escoto H, Ringewald J, Kalpatthi R. Etoposide-related cardiotoxicity in a child with haemophagocytic lymphohistiocytosis. Cardiol Young. 2010;20(1):105–7.

    Article  PubMed  Google Scholar 

  27. Ozkan HA, Bal C, Gulbas Z. Assessment and comparison of acute cardiac toxicity during high-dose cyclophosphamide and high-dose etoposide stem cell mobilization regimens with N-terminal pro-B-type natriuretic peptide. Transfus Apher Sci. 2014;50(1):46–52.

    Article  PubMed  Google Scholar 

  28. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med. 2007;357:39–51.

    Article  CAS  PubMed  Google Scholar 

  29. Albanell J, Montagut C, Jones ET, Pronk L, Mellado B, Beech J. A phase I study of the safety and pharmacokinetics of the combination of pertuzumab (rhuMab 2C4) and capecitabine in patients with advanced solid tumors. Clin Cancer Res. 2008;14:2726–31.

    Article  CAS  PubMed  Google Scholar 

  30. De Keulenaer GW, Doggen K, Lemmens K. The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res. 2010;106:35–46.

    Article  PubMed  CAS  Google Scholar 

  31. Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6.

    Article  CAS  PubMed  Google Scholar 

  32. Ebb D, Meyers P, Grier H, Bernstein M, Gorlick R, Lipshultz SE. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30:2545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Perez EA, Koehler M, Byrne J, Preston AJ, Rappold AJ, Ewer MS. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83:679–86.

    Article  PubMed  Google Scholar 

  34. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96:1788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Senkus E, Jassem J. Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev. 2011;37:300–11.

    Article  CAS  PubMed  Google Scholar 

  36. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34. Published correction appears in N Engl J Med. 2007;357:203.

    Article  CAS  PubMed  Google Scholar 

  37. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  CAS  PubMed  Google Scholar 

  38. Azim H, Azim Jr HA, Escudier B. Trastuzumab versus lapatinib: the cardiac side of the story. Cancer Treat Rev. 2009;35:633–8.

    Article  CAS  PubMed  Google Scholar 

  39. Braverman AC, Antin JH, Plappert MT, Cook EF, Lee RT. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. 1991;9:1215–23.

    CAS  PubMed  Google Scholar 

  40. Kupari M, Volin L, Suokas A, Timonen T, Hekali P, Ruutu T. Cardiac involvement in bone marrow transplantation: electrocardiographic changes, arrhythmias, heart failure and autopsy findings. Bone Marrow Transplant. 1990;5:91–8.

    CAS  PubMed  Google Scholar 

  41. Quezado ZM, Wilson WH, Cunnion RE, Parker MM, Reda D, Bryant G, et al. High-dose ifosfamide is associated with severe, reversible cardiac dysfunction. Ann Intern Med. 1993;118:31–6.

    Article  CAS  PubMed  Google Scholar 

  42. Floyd JD, Nguyen DT, Lobins RL, Bashir Q, Doll DC, Perry MC. Cardiotoxicity of cancer therapy. J Clin Oncol. 2005;23:7685–96.

    Article  CAS  PubMed  Google Scholar 

  43. Verweij J, Funke-Küpper AJ, Teule GJ, Pinedo HM. A prospective study on the dose dependency of cardiotoxicity induced by mitomycin C. Med Oncol Tumor Pharmacother. 1988;5:159–63.

    CAS  PubMed  Google Scholar 

  44. Meyer CC, Calis KA, Burke LB, Walawander CA, Grasela TH. Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy. 1997;17:729–36.

    CAS  PubMed  Google Scholar 

  45. Blütters-Sawatzki R, Grathwohl J, Mertens R, Lampert F. Severe cardiotoxicity of high-dose 5-fluorouracil in combination with folinic acid, cisplatin and methotrexate in a 14-year-old boy with nasopharyngeal carcinoma (Schmincke tumor). Oncology. 1995;52:291–4.

    Article  PubMed  Google Scholar 

  46. Radhakrishnan V, Bakhshi S. 5-Fluorouracil-induced acute dilated cardiomyopathy in a pediatric patient. J Pediatr Hematol Oncol. 2011;33:323.

    Article  PubMed  Google Scholar 

  47. Curigliano G, Mayer EL, Burstein HJ, Winer EP, Goldhirsch A. Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis. 2010;53:94–104.

    Article  CAS  PubMed  Google Scholar 

  48. Franco VI, Henkel JM, Miller TL, Lipshultz SE. Cardiovascular effects in childhood cancer survivors treated with anthracyclines. Cardiol Res Pract. 2011;134679.

  49. Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med. 1995;332:1738–43.

    Article  CAS  PubMed  Google Scholar 

  50. Lipshultz SE, Adams MJ. Cardiotoxicity after childhood cancer: beginning with the end in mind. J Clin Oncol. 2010;28:1276–81.

    Article  PubMed  Google Scholar 

  51. Lipshultz SE, Landy DC, Lopez-Mitnik G, Lipsitz SR, Hinkle AS, Constine LS, et al. Cardiovascular status of childhood cancer survivors exposed and unexposed to cardiotoxic therapy. J Clin Oncol. 2012;30:1050–7. Longitudinal study where the cardiotoxicity was observed in 201 cancer survivors and compared with their 76 siblings for a 10 year period.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Landy DC, Miller TL, Lopez-Mitnik G, Lipsitz SR, Hinkle AS, Constine LS, et al. Aggregating traditional cardiovascular disease risk factors to assess the cardiometabolic health of childhood cancer survivors: an analysis from the Cardiac Risk Factors in Childhood Cancer Survivors Study. Am Heart J. 2012;163:295–301.e2. This study compared the cardiovascular risk factors in 110 cancer survivors and their healthy sibling controls.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Barry E, Alvarez JA, Scully RE, Miler TL, Lipshultz SE. Anthracycline-induced cardiotoxicity: course, pathophysiology, prevention and management. Expert Opin Pharmacother. 2007;8:1039–58.

    Article  CAS  PubMed  Google Scholar 

  54. Miller TL, Lipsitz SR, Lopez-Mitnik G, Hinkle AS, Constine LS, Adams MJ, et al. Characteristics and determinants of adiposity in pediatric cancer survivors. Cancer Epidemiol Biomark Prev. 2010;19:2013–22.

    Article  Google Scholar 

  55. Kahalley LS, Robinson LA, Tyc VL, Hudson MM, Leisenring W, Stratton K, et al. Risk factors for smoking among adolescent survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2012;58:428–34.

    Article  PubMed  Google Scholar 

  56. Lakier JB. Smoking and cardiovascular disease. Am J Med. 1992;93(1A):8S–12S.

    Article  CAS  PubMed  Google Scholar 

  57. Landy DC, Lipsitz SR, Kurtz JM, Hinkle AS, Constine LS, et al. Dietary quality, caloric intake, and adiposity of childhood cancer survivors and their siblings: an analysis from the Cardiac Risk Factors in Childhood Cancer Survivors Study. Nutr Cancer. 2013;65:547–55.

    Article  CAS  PubMed  Google Scholar 

  58. Miller AM, Lopez-Mitnik G, Somarriba G, Lipsitz SR, Hinkle AS, Constine LS, et al. Exercise capacity in long-term survivors of pediatric cancer: an analysis from the Cardiac Risk Factors in Childhood Cancer Survivors Study. Pediatr Blood Cancer. 2013;60(4):663–8.

    Article  PubMed  Google Scholar 

  59. Link G, Tirosh R, Pinson A, Hershko C. Role of iron in the potentiation of anthracycline cardiotoxicity: identification of heart cell mitochondria as a major site of iron-anthracycline interaction. J Lab Clin Med. 1996;127:272–8.

    Article  CAS  PubMed  Google Scholar 

  60. Wallace KB. Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol. 2003;93:105–15.

    Article  CAS  PubMed  Google Scholar 

  61. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med. 2004;351:145–53.

    Article  CAS  PubMed  Google Scholar 

  62. Lipshultz SE, Lipsitz SR, Kutok JL, Miller TL, Colan SD, Neuberg DS, et al. Impact of hemochromatosis gene mutations on cardiac status in doxorubicin-treated survivors of childhood high-risk leukemia. Cancer. 2013;119(19):3555–62. This study identified the correlation between the carriers of HFE gene mutations and the incidence of cardiotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krajinovic M, Elbared J, Drouin S, Bertout L, Rezgui A, Ansari M et al. Polymorphisms of ABCC5 and NOS3 genes influence doxorubicin cardiotoxicity in survivors of childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;1–6. This study identified two new polymorphisms in genes ABCC5 and NOS3 which may contribute to anthracycline-related cardiotoxicity.

  64. Khakoo AY, Kassiotis CM, Tannir N, Plana JC, Halushka M, Bickford C, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112:2500–8.

    Article  CAS  PubMed  Google Scholar 

  65. Busciglio J, Yankner BA. Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature. 1995;378(6559):776–9.

    Article  CAS  PubMed  Google Scholar 

  66. Oberfield SE, Sklar CA. Endocrine sequelae in survivors of childhood cancer. Adolesc Med. 2002;13:161–70.

    PubMed  Google Scholar 

  67. Lipshultz SE, Vlach SA, Stuart R, Sallan SE, Schwartz ML, Colan SD. Cardiac changes associated with growth hormone therapy among children treated with anthracyclines. Pediatrics. 2005;115:1613–22.

    Article  PubMed  Google Scholar 

  68. Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (ACC/AHA/ASE committee to update the 1997 guidelines for the clinical application of echocardiography). J Am Soc Echocardiogr. 2003;16:1091–110.

    PubMed  Google Scholar 

  69. Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent and young adult cancers. Children’s Oncology Group [online]. (2008). http://www.survivorshipguidelines.org/pdf/LTFUGuidelines_40.pdf. Published Oct. 2008, Accessed Oct 2015.

  70. Wong FL, Bhatia S, Landier W, et al. Cost-effectiveness of the children’s oncology group long-term follow-up screening guidelines for childhood cancer survivors at risk for treatment-related heart failure. Ann Intern Med. 2014;160(10):672–83.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Steinherz LJ, Graham T, Hurwitz R, Sondheimer HM, Schwartz RG, Shaffer EM, et al. Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the Cardiology Committee of the Children’s Cancer Study Group. Pediatrics. 1992;89(pt 1):942–9.

    CAS  PubMed  Google Scholar 

  72. Eidem BW, Sapp BG, Suarez CR, Cetta F. Usefulness of the myocardial performance index for early detection of anthracycline-induced cardiotoxicity in children. Am J Cardiol. 2001;87:1120–2. A9.

    Article  CAS  PubMed  Google Scholar 

  73. Ganame J, Claus P, Uyttebroeck A, Ganame J, Claus P, Uyttebroeck A, et al. Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr. 2007;20:1351–8.

    Article  PubMed  Google Scholar 

  74. Yildirim A, Sedef Tunaoglu F, Pinarli FG, Ilhan M, Oguz A, Karadeniz C, et al. Early diagnosis of anthracycline toxicity in asymptomatic long-term survivors: dobutamine stress echocardiography and tissue Doppler velocities in normal and abnormal myocardial wall motion. Eur J Echocardiogr. 2010;11:814–22.

    Article  PubMed  Google Scholar 

  75. Park JH, Kim YH, Hyun MC, Kim HS. Cardiac functional evaluation using vector velocity imaging after chemotherapy including anthracyclines in children with cancer. Korean Circ J. 2009;39:352–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hare JL, Brown JK, Leano R, Jenkins C, Woodward N, Marwick TH, et al. Use of myocardial deformation imaging to detect preclinical myocardial dysfunction before conventional measures in patients undergoing breast cancer treatment with trastuzumab. Am Heart J. 2009;158:294–301.

    Article  CAS  PubMed  Google Scholar 

  77. Lipshultz SE, Sanders SP, Goorin AM, Krischer JP, Sallan SE, Colan SD. Monitoring for anthracycline cardiotoxicity. Pediatrics. 1994;93:433–7.

  78. van Dalen EC, van den Brug M, Caron HN, Kremer LC. Anthracycline induced cardiotoxicity: comparison of recommendations for monitoring cardiac function during therapy in paediatric oncology trials. Eur J Cancer. 2006;42:3199–205.

    Article  PubMed  CAS  Google Scholar 

  79. Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, et al. Early detection and prediction of cardiotoxicity in chemotherapy-treated patients. Am J Cardiol. 2011;107:1375–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shankar SM, Marina N, Hudson MM, Hodgson DC, Adams MJ, Landier W, et al. Cardiovascular Disease Task Force of the Children’s Oncology Group. Monitoring for cardiovascular disease in survivors of childhood cancer: report from the Cardiovascular Disease Task Force of the Children’s Oncology Group. Pediatrics. 2008;121:e387–96.

    Article  PubMed  Google Scholar 

  81. Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, et al. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation. 2013;128(17):1927–95. Reviewed nearly 650 scientific works, the endorsed American Heart Association and American Academy of Pediatrics Scientific Statement.

    Article  PubMed  Google Scholar 

  82. Oberholzer K, Kunz RP, Dittrich M, Thelen M. Anthracycline-induced cardiotoxicity: cardiac MRI after treatment for childhood cancer. Röfo. 2004;176:1245–50. German.

    CAS  PubMed  Google Scholar 

  83. Toro-Salazar OH, Gillan E, O’Loughlin M, Burke GS, Ferranti J, et al. Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging. 2013;6:873–80.

    Article  PubMed  Google Scholar 

  84. Lipshultz SE, Miller TL, Scully RE, Lipsitz SR, Rifai N, et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J Clin Oncol. 2012;30:1042–9. A randomized clinical trial, which validated cTnT and NT-proBNP as surrogate endpoints of late abnormalities of left ventricular structure and function in long-term survivors and are useful early indicators of cardiotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.

    Article  CAS  PubMed  Google Scholar 

  86. Silber JH, Cnaan A, Clark BJ, Paridon SM, Chin AJ, Rychik J, et al. Design and baseline characteristics for the ACE Inhibitor After Anthracycline (AAA) study of cardiac dysfunction in long-term pediatric cancer survivors. Am Heart J. 2001;142:577–85.

    Article  CAS  PubMed  Google Scholar 

  87. Lipshultz SE, Lipsitz SR, Sallan SE, Simbre 2nd VC, Shaikh SL, Mone SM, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.

    Article  CAS  PubMed  Google Scholar 

  88. Ewer MS, Yeh ET. Anthracycline Cardiotoxicity: Clinical Aspects, Recognition, Monitoring, Treatment, and Prevention. In: Cancer and the Heart, vol. 2. 2nd ed. Shelton: PMPH-USA; 2013. p. 28.

    Google Scholar 

  89. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown Jr EJ, Cuddy TE, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327(10):669–77.

    Article  CAS  PubMed  Google Scholar 

  90. Sliwa K, Norton GR, Kone N, Candy G, Kachope J, Woodiwiss AJ, et al. Impact of initiating carvedilol before angiotensin converting enzyme inhibitor therapy on cardiac function in newly diagnosed heart failure. J Am Coll Cardiol. 2004;44(9):1825–30.

    Article  CAS  PubMed  Google Scholar 

  91. Ward KM, Binns H, Chin C, Webber SA, Canter CE, Pahl E. Pediatric heart transplantation for anthracycline cardiomyopathy: cancer recurrence is rare. J Heart Lung Transplant. 2004;23(9):1040–5.

    Article  PubMed  Google Scholar 

  92. Lipshultz SE, Scully RE, Lipsitz SR, Sallan SE, Silverman LB, Miller TL, et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010;11(10):950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;6:CD003917.

  94. Smith AL, Book WM. Effect of non-cardiac drugs, electricity, poison and radiation on the heart. In: Fuster V, Walsh RA, Harrington RA, editors. Hurst’s The Heart. 13th ed. New York: McGraw Hill; 2015.

  95. Asselin BL, Devidas M, Chen L, Franco VI, Pullen J, Borowitz MJ, et al. Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children’s Oncology Group randomized trial 9404. J Clin Oncol. 2015. (In press). Randomized controlled trial that demonstrated (i) the efficacy of dexrazoxane in cardioprotection and (ii) that dexrazoxane does not impair the antitumor activity of doxorubicin.

  96. Chow EJ, Asselin BL, Schwartz CL, Doody DR, Leisenring WM, Aggarwal S, et al. Late mortality after dexrazoxane treatment: a report from the Children’s Oncology Group. J Clin Oncol. 2015;33(44):2639–45. Longitudinal study involving follow-up of patients with ALL that showed that dexrazoxane use was not associated with deaths from acute myeloid leukemia/myelodysplasia or cardiovascular events.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE. Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol. 2005;131:561–78.

  98. Minotti G, Recalcati S, Menna P, Salvatorelli E, Corna G, Cairo G, et al. Doxorubicin cardiotoxicity and the control of iron metabolism: quinone-dependent and independent mechanisms. Methods Enzymol. 2004;378:340–61.

    Article  CAS  PubMed  Google Scholar 

  99. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: Incidences, treatment and prevention. Drug Saf. 2000;22:263–302.

    Article  CAS  PubMed  Google Scholar 

  100. Schlitt A, Jordan K, Vordermark D, Schwamborn J, Langer T, Thomssen C. Cardiotoxicity and oncological treatments. Dtsch Arztebl Int. 2014;111:161–8.

    PubMed  PubMed Central  Google Scholar 

  101. Vejpongsa P, Yeh ET. Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol. 2014;64:938–45.

    Article  CAS  PubMed  Google Scholar 

  102. Lyu YL, Kerrigan JE, Lin CP, et al. Topoisomerase II-beta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67:8839–46.

    Article  CAS  PubMed  Google Scholar 

  103. Lipshultz SE, Miller TL, Gerschenson M, Neuberg DS, Stevenson KE, Franco VI, et al. Impaired mitochondrial function is abrogated by dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors. Cancer. 2016. doi: 10.1002/cncr.29872. Epub ahead of print. Doxorubicin-treated childhood cancer survivors had increased peripheral blood mononuclear cell mitochondrial DNA copies/cell, and concomitant use of dexrazoxane was associated with lower mitochondrial DNA copies/cell. With no difference in oxidative phosphorylation activity between the groups, this study suggests a possible compensatory increase in mitochondrial DNA copies/cell to maintain mitochondrial function in the setting of mitochondrial dysfunction.

  104. US Food and Drug Administration. Orphan drug designations and approvals. http://www.accessdata.fda.gov/scripts/opdlisting/oopd/OOPD_Results_2.cfm?Index_Number=441314. Accessed Sep. 2015.

  105. Choi HS, Park ES, Kang HJ, Shin HY, Noh CI, Yun YS, et al. Dexrazoxane for preventing anthracycline cardiotoxicity in children with solid tumors. J Korean Med Sci. 2010;25:1336–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shaikh F, Dupuis LL, Alexander S, Gupta A, Mertens L, Nathan PC. Cardioprotection and second malignant neoplasms associated with dexrazoxane in children receiving anthracycline chemotherapy: a systematic review and meta-analysis. J Natl Cancer Inst. 2015;108(4).

  107. Barry EV, Vrooman LM, Dahlberg SE, Neuberg DS, Asselin BL, Athale UH, et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol. 2008;26(7):1106–11.

    Article  CAS  PubMed  Google Scholar 

  108. Vrooman LM, Neuberg DS, Stevenson KE, Asselin BL, Athale UH, Clavell L, et al. The low incidence of secondary acute myelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur J Cancer. 2011;47(9):1373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Schwartz CL, Wexler LH, Krailo MD, Teot LA, Devidas M, Steinherz LJ, et al. Intensified chemotherapy with dexrazoxane cardioprotection in newly diagnosed nonmetastatic osteosarcoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2016;63(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  110. Medicines Agency European. Assessment report dexrazoxane-containing medicinal products, EMA. Available at www.ema.europs.eu; 2011. Published June 24,2011; accessed December 13, 2015.

  111. Tebbi CK, London WB, Friedman D, Villaluna D, De Alarcon PA, Constine LS, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. J Clin Oncol. 2007;25:493–500.

    Article  CAS  PubMed  Google Scholar 

  112. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011;15(6):CD003917.

    Google Scholar 

  113. Lipshultz SE, Franco VI, Sallan SE, Adamson PC, Steiner RK, Swain SM, et al. Dexrazoxane for reducing anthracycline-related cardiotoxicity in children with cancer: An update of the evidence. Prog Pediat Cardiol. 2014;36:39–49.

    Article  Google Scholar 

  114. Kalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer. 2013;49:2900–9.

    Article  CAS  PubMed  Google Scholar 

  115. Lipshultz SE, Scully RE, Lipsitz SE, Sallan SE, Silverman LB, Miller TL, et al. Gender differences in long-term dexrazoxane cardioprotection in doxorubicin-treated children with acute lymphoblastic leukemia. J Clin Oncol. 2009;27:15S.

    Article  Google Scholar 

  116. Cvetkovic RS, Scott LJ. Dexrazoxane, a review of its use for cardioprotection during anthracycline chemotherapy. Drugs. 2005;65:1005–24.

    Article  CAS  PubMed  Google Scholar 

  117. Gridna DJ, Kataoka Y, Murley JS. Amifostine: mechanisms of action, underlying cytoprotection and chemoprevention. Drug Metabol Drug Interact. 2000;16:237–79.

    Google Scholar 

  118. Nazeyrollas P, Frances C, Prevost A, Costa B, Lorenzato M, Kantelip JP, et al. Efficiency of amifostine as a protection against doxorubicin toxicity in rats during a 12-day treatment. Anti-Cancer Res. 2003;23:405–9.

    CAS  Google Scholar 

  119. Gallegos-Castorena S, Martinez-Avalos A, Mohar-betancourt A, Guerrero-Avendaño G, Zapata-Tarrés M, Medina-Sansón A, et al. Toxicity prevention with amifostine in pediatric osteosarcoma patients treated with cisplatin and doxorubicin. Pediatr Hematol Oncol. 2007;24:403–8.

    Article  CAS  PubMed  Google Scholar 

  120. Briston DA, Cochran TR, Lipshultz SE. Cardiovascular effects of cancer therapy. In: Survivors of childhood and adolescent cancer: a multidisciplinary approach. CL Schwartz et al. (eds). Springer International Publishing 2015, 167–99. A chapter describing the pathophysiology, screening, and management of cardiotoxicity due to chemotherapy.

  121. Danesi F, Malaguti M, Nunzio MD, Maranesi M, Biagi PL, Bordoni A. Counteraction of Adriamycin-induced oxidative damage in rat heart by selenium dietary supplementation. J Agric Food Chem. 2006;54:1203–8.

    Article  CAS  PubMed  Google Scholar 

  122. Shimpo K, Nagatsu T, Yamada K, Sato T, Niimi H, Shamoto M. Ascorbic acid and Adriamycin toxicity. Am J Clin Nutr. 1991;54(suppl):1298S–301S.

    CAS  PubMed  Google Scholar 

  123. Antunes LM, Takahashi CS. Protection and induction of chromosomal damage by vitamin C in human lymphocyte cultures. Teratog Carcinog Mutagen. 1999;19:53–9.

    Article  CAS  PubMed  Google Scholar 

  124. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC. Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science. 1977;197:165–7.

    Article  CAS  PubMed  Google Scholar 

  125. Wang YM, Madanat FF, Kimball JC, Gleiser CA, Ali MK, Kaufman MW, et al. Effect of vitamin E against Adriamycin-induced toxicity in rabbits. Cancer Res. 1980;40:1022–7.

    CAS  PubMed  Google Scholar 

  126. Legha SS, Benjamin RS, Mackay B, Ewer M, Wallace S, Valdivieso M. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med. 1982;96:133–9.

    Article  CAS  PubMed  Google Scholar 

  127. Lipshultz SE, Miller TL, Lipsitz SR, Neuberg DS, Dahlberg SE, Colan SD, et al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130:1003–11. Randomized controlled trial that showed that continuous infusion of doxorubicin did not have long-term cardioprotection compared to bolus infusions.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lipshultz SE, Giantris AL, Lipsitz SR, Kimball Dalton V, Asselin BL, Barr RD, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91–01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol. 2002;20(6):1677–82.

    Article  CAS  PubMed  Google Scholar 

  129. Tardi PG, Boman NL, Cullis PR. Liposomal doxorubicin. J Drug Target. 1996;4:129–40.

    Article  CAS  PubMed  Google Scholar 

  130. Fulbright JM, Huh W, Anderson P, Chandra J. Can anthracycline therapy for pediatric malignancies be less cardiotoxic? Curr Oncol Rep. 2010;12:411–9.

    Article  PubMed  Google Scholar 

  131. O’Brien ME, Wigler N, Inbar M, Rosso R, Grischkle ES, Antoro A, et al. CAELYX Breast Cancer Study Group. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15:440–9.

    Article  PubMed  Google Scholar 

  132. Steiner R. Increasing exercise in long-term survivors of pediatric cancer and their siblings: should treatment be a family affair? Pediatr Blood Cancer. 2013;60(4):529–30.

    Article  PubMed  Google Scholar 

  133. Lipshultz SE, Cochran TR, Franco VI, Miller TL. Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol. 2013;10:697–710.

    Article  CAS  PubMed  Google Scholar 

  134. Lipshultz SE, Franco VI, Miller TL, Colan SD, Sallan SE. Cardiovascular diseases in adult survivors of childhood cancer. Annu Rev Med. 2015;66:161–76.

    Article  CAS  PubMed  Google Scholar 

  135. Bair SM, Choueiri TK, Moslehi J. Cardiovascular complications associated with novel angiogenesis inhibitors: emerging evidence and evolving perspectives. Trends Cardiovasc Med. 2013;23(4):104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Vivian I. Franco was supported in part by the Michael Garil Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E. Lipshultz MD.

Ethics declarations

Conflict of Interest

Jyothsna Akam-Venkata, Vivian I. Franco, and Steven E. Lipshultz each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akam-Venkata, J., Franco, V.I. & Lipshultz, S.E. Late Cardiotoxicity: Issues for Childhood Cancer Survivors. Curr Treat Options Cardio Med 18, 47 (2016). https://doi.org/10.1007/s11936-016-0466-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0466-6

Keywords

Navigation