Skip to main content

Advertisement

Log in

Stem Cell Therapy for Incontinence: Where Are We Now? What is the Realistic Potential?

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

A significant number of women experience stress urinary incontinence (SUI), which greatly affects their quality of life. Recent research investigating utilization of stem cells and their derivatives for the prevention and treatment of SUI has been performed to test the effect of cell source and method of administration in several animal models of SUI. The type of stem cell, timing of optimal dose or doses after injury, mechanism of action of stem cells, and route of administration must be investigated both preclinically and clinically before stem cell therapy becomes a possible treatment for SUI, although the future of this therapy looks promising. This article reviews the progress in stem cell research for incontinence and describes areas of future work as suggested by research in other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Charalambous S, Trantafylidis A. Impact of urinary incontinence on quality of life. Pelviperineology. 2009;28(2):51–3.

    Google Scholar 

  2. Milsom I. Lower urinary tract symptoms in women. Curr Opin Urol. 2009;19(4):337–41.

    Article  PubMed  Google Scholar 

  3. Nilsson CG, Palva K, Rezapour M, Falconer C. Eleven years prospective follow-up of the tension-free vaginal tape procedure for treatment of stress urinary incontinence. Int Urogynecol J. 2008;19(8):1043–7.

    Article  CAS  Google Scholar 

  4. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol. 1997;89:501–6.

    Article  PubMed  CAS  Google Scholar 

  5. Rogers RG. What’s best in the treatment of stress urinary incontinece? New Engl J Med. 2010;362(22):2124–5.

    Article  PubMed  CAS  Google Scholar 

  6. Albo ME, Richter HE, Brubaker L, Norton P, Kraus SR, Zimmern PE, et al. Burch colposuspension versus fascial sling to reduce urinary stress incontinence. New Engl J Med. 2007;356(21):2143–55.

    Article  PubMed  CAS  Google Scholar 

  7. Gungorduk K, Celebi I, Ark C, Celikkol O, Yildirim G. Which type of mid-urethral sling procedure should be chosen for treatment of stress urinary incontinance with intrinsic sphincter deficiency? tension-free vaginal tape or transobturator tape. Acta Obstet Gynecol Scand. 2009;88(8):920–6.

    Article  PubMed  Google Scholar 

  8. Staack A, Rodriguez LV. Stem cells for the treatment of urinary incontinence. Curr Urol Rep. 2011;12(1):41–6.

    Article  PubMed  Google Scholar 

  9. Oshima H, Payne TR, Urish KL, Sakai T, Ling YQ, Gharaibeh B, et al. Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Mol Ther. 2005;12(6):1130–41.

    Article  PubMed  CAS  Google Scholar 

  10. Fu Q, Song XF, Liao GL, Deng CL, Cui L. Myoblasts differentiated from adipose-derived stem cells to treat stress urinary incontinence. Urology. 2010;75(3):718–23.

    Article  PubMed  Google Scholar 

  11. Drost AC, Weng S, Feil G, Schafer J, Baumann S, Kanz L, et al. In vitro myogenic differentiation of human bone marrow-derived mesenchymal stem cells as a potential treatment for urethral sphincter muscle repair. Hematopoietic Stem Cells Vii. 2009;1176:135–43.

    CAS  Google Scholar 

  12. Wu GZ, Zheng X, Jiang ZQ, Wang JH, Song YF. Induced differentiation of adipose-derived stromal cells into myoblasts. J Huazhong Univ Sci Technol Med Sci. 2010;30(3):285–90.

    Article  PubMed  Google Scholar 

  13. Herschorn S, Carr L, Birch C, Murphy M, Robert M, Jankowski R, et al. Autologous muscle-derived cells as therapy for stress urinary incontinence: a randomized, blinded trial. Neurourol Urodyn. 2010;29(2):307.

    Google Scholar 

  14. Tang XL, Rokosh G, Sanganalmath SK, Pang Y, Yuan FP, Dai SJ, et al. Beneficial effects of cardiac progenitor cells on LV function 1 year after treatment in rats with myocardial infarction. Circulation. 2008;118(18):S289–90.

    Google Scholar 

  15. Amado LC, Schuleri KH, Saliaris AP, Boyle AJ, Helm R, Oskouei B, et al. Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. J Am Coll Cardiol. 2006;48(10):2116–24.

    Article  PubMed  Google Scholar 

  16. Kuliszewski MA, Kobulnik J, Lindner JR, Stewart DJ, Leong-Poi H. Vascular gene transfer of SDF-1 promotes endothelial progenitor cell engraftment and enhances angiogenesis in ischemic muscle. Mol Ther. 2011;19(5):895–902.

    Article  PubMed  CAS  Google Scholar 

  17. •• Sundararaman S, Miller TJ, Pastore JM, Kiedrowski M, Aras R, Penn MS. Plasmid-based transient human stromal cell-derived factor-1 gene transfer improves cardiac function in chronic heart failure. Gene Ther. 2011. In this paper, the authors demonstrate that increasing expression of stromal cell–derived factor-1 promoted angiogenesis and improved cardiac function in rats with ischemic heart failure, presumably by attracting stem cells to the region to facilitate recovery from the injury. These data demonstrate that stand-alone nonviral gene transfer is a strategy for improving cardiac function, and could possibly work for the lower urinary tract as well.

  18. Gandia C, Arminan A, Garcia-Verdugo JM, Lledo E, Ruiz A, Minana MD, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells. 2008;26(3):638–45.

    Article  PubMed  Google Scholar 

  19. Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004;287(6):H2670–6.

    Article  PubMed  CAS  Google Scholar 

  20. Tang XL, Rokosh G, Guo YR, Bolli R. Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circ J. 2010;74(3):390–404.

    Article  PubMed  Google Scholar 

  21. Hashemi SM, Ghods S, Kolodgie FD, Parcham-Azad K, Keane M, Hamamdzic D, et al. A placebo controlled, dose-ranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Hear J. 2008;29(2):251–9.

    Article  Google Scholar 

  22. Gnecchi M, He HM, Liang OD, Melo LG, Morello F, Mu H, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med. 2005;11(4):367–8.

    Article  PubMed  CAS  Google Scholar 

  23. Uemura R, Xu M, Ahmad N, Ashraf M. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res. 2006;98(11):1414–21.

    Article  PubMed  CAS  Google Scholar 

  24. Gnecchi M, Zhang ZP, Ni AG, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19.

    Article  PubMed  CAS  Google Scholar 

  25. •• Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54(24):2277–86. The authors report results that demonstrate that intravenous allogeneic human mesenchymal stem cells are safe to administer to patients with myocardial infarction. This clinical study provides pivotal safety and provisional efficacy data for allogeneic BMSCs in postinfarction patients and suggests this approach could be useful in therapy for other conditions.

    Article  PubMed  CAS  Google Scholar 

  26. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367(9505):113–21.

    Article  PubMed  Google Scholar 

  27. Assmus B, Rolf A, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail. 2010;3(1):89–96.

    Article  PubMed  Google Scholar 

  28. Bartunek J, Dimmeler S, Drexler H, Fernandez-Aviles F, Galinanes M, Janssens S, et al. The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. Eur Hear J. 2006;27(11):1338–40.

    Article  Google Scholar 

  29. Traverse JH, Henry TD, Vaughn DE, Ellis SG, Pepine CJ, Willerson JT, et al. Rationale and design for TIME: a phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. Am Hear J. 2009;158(3):356–63.

    Article  Google Scholar 

  30. Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, Willerson JT, et al. LateTIME a phase-ii, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Hear Inst J. 2010;37(4):412–20.

    Google Scholar 

  31. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132(4):598–611.

    Article  PubMed  CAS  Google Scholar 

  32. Shokeir AA, Harraz AM, El-Din ABS. Tissue engineering and stem cells: basic principles and applications in urology. Int J Urol. 2010;17(12):964–73.

    Article  PubMed  CAS  Google Scholar 

  33. Meirelles LDS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(11):2204–13.

    Article  CAS  Google Scholar 

  34. Lee RH, Kim B, Choi I, Kim H, Choi HS, Suh K, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004;14(4–6):311–24.

    Article  PubMed  CAS  Google Scholar 

  35. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.

    Article  PubMed  CAS  Google Scholar 

  36. De Coppi P, Delo D, Farrugia L, Udompanyanan K, Yoo JJ, Nomi M, et al. Angiogenic gene-modified muscle cells for enhancement of tissue formation. Tissue Eng. 2005;11(7–8):1034–44.

    Article  PubMed  Google Scholar 

  37. Goodsell DS. The molecular perspective: VEGF and angiogenesis. Stem Cells. 2003;21(1):118–9.

    Article  PubMed  Google Scholar 

  38. Prockop DJ, Gregory CA, Spees JL. One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci U S A. 2003;100:11917–23.

    Article  PubMed  CAS  Google Scholar 

  39. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174(1):11–20.

    Article  PubMed  Google Scholar 

  40. Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells. 2010;28(3):585–96.

    PubMed  CAS  Google Scholar 

  41. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A. 2005;102(32):11474–9.

    Article  PubMed  CAS  Google Scholar 

  42. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180(4):2581–7.

    PubMed  CAS  Google Scholar 

  43. Duffield JS, Bonventre JV. Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int. 2005;68(5):1956–61.

    Article  PubMed  CAS  Google Scholar 

  44. •• Shabbir A, Zisa D, Suzuki G, Lee T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am J Physiol Heart Circ Physiol. 2009;296(6):H1888–897. The authors demonstrated that intramuscularly injected mesenchymal stem cells (MSCs) and MSC-conditioned medium each significantly improved ventricular function in a hamster heart failure model, suggesting that cell therapy does not need to be local to be effective. Because multiple tissues are damaged during delivery, this suggests that a less invasive approach could be utilized to deliver a cell-based therapy.

    Article  PubMed  CAS  Google Scholar 

  45. Dissaranan C, Gill B, Cruz M, Salcedo L, Brian B, Kiedrowski M, et al. Intravenous mesenchymal stem cells facilitate recovery from stress urinary incontinence after childbirth injury. Neurourol Urodyn. 2011;30(2):235.

    Google Scholar 

  46. Woo LL, Hijaz A, Kuang M, Penn MS, Damaser MS, Rackley RR. Overexpression of stem cell homing cytokines in rat pelvic organs following vaginal distension. J Urol. 2007;177:1568–72.

    Article  PubMed  CAS  Google Scholar 

  47. Wood HM, Kuang M, Woo L, Hijaz A, Butler RS, Penn M, et al. Cytokine expression after vaginal distention of different durations in virgin Sprague-Dawley rats. J Urol. 2008;180(2):753–9.

    Article  PubMed  CAS  Google Scholar 

  48. Strasser H, Berjukow S, Marksteiner R, Margreiter E, Hering S, Bartsch G, et al. Stem cell therapy for urinary stress incontinence. Exp Gerontol. 2004;39(9):1259–65.

    Article  PubMed  Google Scholar 

  49. Lanza RP, Chung HY, Yoo JJ, Wettstein PJ, Blackwell C, Borson N, et al. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol. 2002;20(7):689–96.

    Article  PubMed  CAS  Google Scholar 

  50. Minuth WW, Sorokin L, Schumacher K. Generation of renal tubules at the interface of an artificial interstitium. Cell Physiol Biochem. 2004;14(4–6):387–94.

    Article  PubMed  CAS  Google Scholar 

  51. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. In vitro generation of male germ cells from embryonic stem cells. Biol Reprod. 2004;87

  52. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A. 2003;100(20):11457–62.

    Article  PubMed  CAS  Google Scholar 

  53. Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells. 2005;23(9):1242–50.

    Article  PubMed  Google Scholar 

  54. Jain KK. Ethical and regulatory aspects of embryonic stem cell research. Expert Opin Biol Ther. 2005;5(2):153–62.

    Article  PubMed  CAS  Google Scholar 

  55. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  PubMed  CAS  Google Scholar 

  56. Delorme B, Charbord P. Culture and characterization of human bone marrow mesenchymal stem cells. Tissue Eng Meth Mol Med. 2007;140:67–81.

    CAS  Google Scholar 

  57. Nikolavsky D, Chancellor MB. Stem cell therapy for stress urinary incontinence. Neurourol Urodyn. 2010;29:S36–41.

    Article  PubMed  Google Scholar 

  58. Furuta A, Jankowski RJ, Pruchnic R, Egawa S, Yoshimura N, Chancellor MB. Physiological effects of human muscle-derived stem cell implantation on urethral smooth muscle function. Int Urogynecol J. 2008;19(9):1229–34.

    Article  Google Scholar 

  59. • Kim SO, Na HS, Kwon D, Joo SY, Kim HS, Ahn Y. Bone-marrow-derived mesenchymal stem cell transplantation enhances closing pressure and leak point pressure in a female urinary incontinence rat model. Urol Int. 2011;86(1):110–16. The authors demonstrated that allogenic MSCs can increase LPP in a rat model of SUI, providing preliminary data for clinical trials in this area.

    Article  PubMed  Google Scholar 

  60. Corcos J, Ghoniem G, Comiter C, Westney OL, Herschorn S. Durability of macroplastioue (R) injection for female stress urinary incontinence: 2 years experience. Neurourol Urodyn. 2010;29(2):275.

    Google Scholar 

  61. • Kinebuchi Y, Aizawa N, Imamura T, Ishizuka O, Igawa Y, Nishizawa O. Autologous bone-marrow-derived mesenchymal stem cell transplantation into injured rat urethral sphincter. Int J Urol. 2010;17(4):359–68. The authors treated rats that had undergone urethrolysis and periuethral cardiotoxin injection with autologous BMSCs. They found that the proportions of skeletal muscle cells and peripheral nerves in the urethra were significantly greater in the BMSC group compared to the control group, suggesting that stem cells can facilitate reinnervation of the urethra after a denervation injury.

    Article  PubMed  Google Scholar 

  62. • Zou XH, Zhi YL, Chen X, Jin HM, Wang LL, Jiang YZ et al. Mesenchymal stem cell seeded knitted silk sling for the treatment of stress urinary incontinence. Biomater. 2010;31(18):4872–879. The authors developed a tissue-engineered sling with bone marrow–derived mesenchymal stem cell–seeded degradable silk scaffold. They found that both the silk sling and tissue-engineered sling showed convincing functional effects for the treatment of SUI in a rat model. The better ligament-like tissue formation in the tissue-engineered sling suggested the potential for improved long-term function with less failure.

    Article  PubMed  CAS  Google Scholar 

  63. Usas A, Huard J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials. 2007;28(36):5401–6.

    Article  PubMed  CAS  Google Scholar 

  64. Li Y. Isolating stem cells from soft musculoskeletal tissues. J Vis Exp. 2010;5(41)

  65. Qu ZQ, Balkir L, van Deutekom JCT, Robbins PD, Pruchnic R, Huard J. Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol. 1998;142(5):1257–67.

    Article  PubMed  CAS  Google Scholar 

  66. Wu XY, Wang SL, Chen BL, An XL. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 2010;340(3):549–67.

    Article  PubMed  Google Scholar 

  67. Deasy BM, Jankowski RJ, Huard J. Muscle-derived stem cells: characterization and potential for cell-mediated therapy. Blood Cell Mol Dis. 2001;27(5):924–33.

    Article  CAS  Google Scholar 

  68. Kwon D, Kim Y, Pruchnic R, Jankowski R, Usiene I, De Miguel F, et al. Periurethral cellular injection: comparison of muscle-derived progenitor cells and fibroblasts with regard to efficacy and tissue contractility in an animal model of stress urinary incontinence. Urology. 2006;68(2):449–54.

    Article  PubMed  Google Scholar 

  69. Lee JY, Paik SY, Yuk SH, Lee JH, Ghil SH, Lee SS. Long term effects of muscle-derived stem cells on leak point pressure and closing pressure in rats with transected pudendal nerves. Mol Cell. 2004;18(3):309–13.

    CAS  Google Scholar 

  70. Xu Y, Song Y. Transplantation of muscle-derived stem cell plus fibrin glue restores urethral function in a pudendal nerve-transected rat model. Neurourol Urodyn. 2009;28(7):822–3.

    Google Scholar 

  71. Chancellor MB, Yokoyama T, Tirney S, Mattes CE, Ozawa H, Yoshimura N, et al. Preliminary results of myoblast injection into the urethra and bladder wall: a possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourol Urodyn. 2000;19(3):279–87.

    Article  PubMed  CAS  Google Scholar 

  72. Kajbafzadeh AM, Elmi A, Payabvash S, Salmasi AH, Saeedi P, Mohamadkhani A, et al. Transurethral autologous myoblast injection for treatment of urinary incontinence in children with classic bladder exstrophy. J Urol. 2008;180(3):1098–105.

    Article  PubMed  Google Scholar 

  73. Strasser H, Marksteiner R, Margreiter E, Mitterberger M, Pinggera GM, Frauscher F, et al. Transurethral ultrasonography-guided injection of adult autologous stem cells versus transurethral endoscopic injection of collagen in treatment of urinary incontinence. World J Urol. 2007;25(4):385–92.

    Article  PubMed  CAS  Google Scholar 

  74. Kleinert S, Horton R. Retraction-autologous myoblasts and fibroblasts for treatment of stress urinary incontinence: a randomised controlled trial. Lancet. 2008;372(9641):789–90.

    Article  PubMed  Google Scholar 

  75. Carr LK, Steele D, Steele S, Wagner D, Pruchnic R, Jankowski R, et al. 1-year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int Urogynecol J. 2008;19(6):881–3.

    Article  CAS  Google Scholar 

  76. Peters K, Kaufman M, Dmochowski R, Carr L, Hershorn S, Fischer M, et al. Autologous muscle derived cell therapy for the treatment of female stress urinary incontinence: a multi-center experience. J Urol. 2011;185(4):e535–6.

    Article  Google Scholar 

  77. Roche R, Festy F, Fritel X. Stem cells for stress urinary incontinence: the adipose promise. J Cell Mol Med. 2010;14(1–2):135–42.

    Article  PubMed  Google Scholar 

  78. Rodriguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A. 2006;103(32):12167–72.

    Article  PubMed  CAS  Google Scholar 

  79. •• Lin GT, Wang GF, Banie L, Ning HX, Shindel AW, Fandel TM et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy. 2010;12(1):88–95. The authors investigated whether transplantation of ADSCs can treat SUI in a rat model. They found that ADSC-treated groups had significantly higher elastin content than the control group, and within the ADSC-treated groups, rats with normal voiding pattern also had significantly higher elastin content than rats with voiding dysfunction. This suggests that proper elastin repair is important to restoration of function in treating SUI.

    Article  PubMed  CAS  Google Scholar 

  80. • Zhao W, Zhang C, Jin C, Zhang Z, Kong L, Xu W et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol. 2011;59(1):155–63. The authors investigated if nerve growth factor facilitated the effect of ADSCs delivered periurethrally. They found significant improvements in LPP as well as in the amount of muscle and ganglia in the group that received nerve growth factor, suggesting that this and other growth factors could be utilized to facilitate recovery from SUI.

    Article  PubMed  CAS  Google Scholar 

  81. Menasch P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial—first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117(9):1189–200.

    Article  Google Scholar 

  82. Yamamoto T, Gotoh M, Hattori R, Toriyama K, Kamei Y, Iwaguro H, et al. Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases (Retracted article. See vol. 17, pg. 896, 2010). Int J Urol. 2010;17(1):75–82.

    Article  PubMed  Google Scholar 

  83. Rehman J, Traktuev D, Li JL, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292–8.

    Article  PubMed  Google Scholar 

  84. Retraction. Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases. Int J Urol. 2010;17(10):896

  85. Flynn A, Barry F, O'Brien T. UC blood-derived mesenchyrnal stromal cells: an overview. Cytotherapy. 2007;9(8):717–26.

    Article  PubMed  CAS  Google Scholar 

  86. Roobrouck VD, Ulloa-Montoya F, Verfaillie CM. Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res. 2008;314(9):1937–44.

    Article  PubMed  CAS  Google Scholar 

  87. Kim JY, Jeon HB, Jang YS, Oh W, Jhang JW. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells. 2010;2(2):34–8.

    Article  PubMed  Google Scholar 

  88. Lim JJ, Jang JB, Kim JY, Moon SH, Lee CN, Lee KJ. Human umbilical cord blood mononuclear cell transplantation in rats with intrinsic sphincter deficiency. J Kor Med Sci. 2010;25(5):663–70.

    Article  Google Scholar 

  89. Lee CN, Jang JB, Kim JY, Koh C, Baek JY, Lee KJ. Human cord blood stem cell therapy for treatment of stress urinary incontinence. J Kor Med Sci. 2010;25(6):813–6.

    Article  Google Scholar 

  90. Jahoda CAB, Whitehouse CJ, Reynolds AJ, Hole N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp Dermatol. 2003;12(6):849–59.

    Article  PubMed  Google Scholar 

  91. Lavker RM, Sun TT, Oshima H, Barrandon Y, Akiyama M, Ferraris C, et al. Hair follicle stem cells. J Investig Dermatol Symp Proc. 2003;8(1):28–38.

    Article  PubMed  Google Scholar 

  92. Drewa T, Joachimiak R, Kaznica A, Sarafian V, Sir J. Primary cultures from rat vibrissae as a potential cell source for in vitro construction of urinary bladder wall grafts. Transplant Proc. 2009;41(5):1932–5.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang YY, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ, et al. Urine derived cells are a potential source for urological tissue reconstruction. J Urol. 2008;180(5):2226–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Partial support for this publication provided by NIH R01 HD059859 and NIH R01 HD038679. This publication also was made possible by the Case Western Reserve University/Cleveland Clinic CTSA Grant Number UL1 RR024989 from NIH/National Center for Research Resources (NCRR), the Cleveland Clinic Glickman Urological and Kidney Institute: Section of Female Pelvic Medicine and Reconstructive Surgery, and the Rehabilitation Research & Development Service of the Department of Veterans Affairs.

Springer would like to thank Dr. Howard B. Goldman, Section Editor of the Voiding Dysfunction section, for his proposal and review of this article.

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot S. Damaser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dissaranan, C., Cruz, M.A., Couri, B.M. et al. Stem Cell Therapy for Incontinence: Where Are We Now? What is the Realistic Potential?. Curr Urol Rep 12, 336–344 (2011). https://doi.org/10.1007/s11934-011-0210-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-011-0210-4

Keywords

Navigation