Skip to main content

Advertisement

Log in

Mitochondria, Aging, and Cellular Senescence: Implications for Scleroderma

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The etiology of systemic sclerosis (SSc), which is a rare immune-mediated inflammatory disease characterized by vascular damage and fibrosis, is still unknown. However, different intrinsic (genetics) and extrinsic (environmental) factors play a part in the progression of the disease. This review focuses on the role of aging, mitochondrial dysfunction, and senescence in SSc.

Recent Findings

Mitochondrial dysfunction and senescence have been linked to the age-related susceptibility to other interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF). SSc is not regarded as an age-related disease but does show a higher incidence of cardiac events, fibrosis, and mortality at older age.

Summary

We provide an overview of the current status of the role of aging, mitochondrial dysfunction, and senescence in SSc. Further work is needed to validate some of these pathways in SSc and may allow for new therapeutic interventions focused on restoring mitochondrial homeostasis and the targeted removal of chronic-senescent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Wu W, Jordan S, Becker MO, Dobrota R, Maurer B, Fretheim H, et al. Prediction of progression of interstitial lung disease in patients with systemic sclerosis: the SPAR model. Ann Rheum Dis. 2018;77:1326–32.

    CAS  PubMed  Google Scholar 

  2. Nihtyanova SI, Sari A, Harvey JC, Leslie A, Derrett-Smith EC, Fonseca C, et al. Using autoantibodies and cutaneous subset to develop outcome-based disease classification in systemic sclerosis. Arthritis Rheum. 2020;72(3):465–76.

  3. Walker UA, Tyndall A, Czirjak L, Denton C, Farge-Bancel D, Kowal-Bielecka O, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials And Research Group database. Ann Rheum Dis. 2007;66:754–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis. 2007;66:940–4.

    PubMed  PubMed Central  Google Scholar 

  5. Poudel DR, Jayakumar D, Danve A, Sehra ST, Derk CT. Determinants of mortality in systemic sclerosis: a focused review. Rheumatol Int. 2018;38:1847–58.

    PubMed  Google Scholar 

  6. Denton CP, Khanna D. Systemic sclerosis. Lancet. 2017;390:1685–99.

    PubMed  Google Scholar 

  7. Morgan C, Knight C, Lunt M, Black CM, Silman AJ. Predictors of end stage lung disease in a cohort of patients with scleroderma. Ann Rheum Dis. 2003;62:146–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashmore P, Tikly M, Wong M, Ickinger C. Interstitial lung disease in South Africans with systemic sclerosis. Rheumatol Int. 2018;38:657–62.

    PubMed  Google Scholar 

  9. Winstone TA, Assayag D, Wilcox PG, Dunne JV, Hague CJ, Leipsic J, et al. Predictors of mortality and progression in scleroderma-associated interstitial lung disease: a systematic review. Chest. 2014;146:422–36.

    PubMed  Google Scholar 

  10. Khanna D, Furst DE, Clements PJ, Allanore Y, Baron M, Czirjak L, et al. Standardization of the modified Rodnan skin score for use in clinical trials of systemic sclerosis. J Scleroderma Relat Disord. 2017;2:11–8.

    PubMed  Google Scholar 

  11. Volkmann ER, Tashkin DP, Sim M, Li N, Goldmuntz E, Keyes-Elstein L, et al. Short-term progression of interstitial lung disease in systemic sclerosis predicts long-term survival in two independent clinical trial cohorts. Ann Rheum Dis. 2019;78:122–30.

    PubMed  Google Scholar 

  12. Habiel DM, Hogaboam C. Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Front Pharmacol. 2014;5:2.

    PubMed  PubMed Central  Google Scholar 

  13. Korman B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res. 2019;209:77–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bagnato G, Harari S. Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev. 2015;24:102–14.

    PubMed  Google Scholar 

  15. Hinz B. The extracellular matrix and transforming growth factor-beta1: tale of a strained relationship. Matrix Biol. 2015;47:54–65.

    CAS  PubMed  Google Scholar 

  16. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190:693–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rosa I, Romano E, Fioretto BS, Manetti M. The contribution of mesenchymal transitions to the pathogenesis of systemic sclerosis. Eur J Rheumatol. 2019;1–8. https://doi.org/10.5152/eurjrheum.2019.19081.

  18. Valenzi E, Bulik M, Tabib T, Morse C, Sembrat J, Trejo Bittar H, et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis. 2019;78:1379–87.

    CAS  PubMed  Google Scholar 

  19. Lafyatis R. Transforming growth factor beta—at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10:706–19.

    CAS  PubMed  Google Scholar 

  20. Altorok N, Tsou PS, Coit P, Khanna D, Sawalha AH. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann Rheum Dis. 2015;74:1612–20.

    CAS  PubMed  Google Scholar 

  21. Wei J, Ghosh AK, Chu H, Fang F, Hinchcliff ME, Wang J, et al. The histone deacetylase sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor beta signaling. Arthritis Rheum. 2015;67:1323–34.

    CAS  Google Scholar 

  22. Manno RL, Wigley FM, Gelber AC, Hummers LK. Late-age onset systemic sclerosis. J Rheumatol. 2011;38:1317–25.

    PubMed  PubMed Central  Google Scholar 

  23. Ferri C, Sebastiani M, Lo Monaco A, Iudici M, Giuggioli D, Furini F, et al. Systemic sclerosis evolution of disease pathomorphosis and survival. Our experience on Italian patients' population and review of the literature. Autoimmun Rev. 2014;13:1026–34.

    PubMed  Google Scholar 

  24. Strickland G, Pauling J, Cavill C, Shaddick G, McHugh N. Mortality in systemic sclerosis-a single centre study from the UK. Clin Rheumatol. 2013;32:1533–9.

    PubMed  Google Scholar 

  25. Luckhardt TR, Thannickal VJ. Systemic sclerosis-associated fibrosis: an accelerated aging phenotype? Curr Opin Rheumatol. 2015;27:571–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Skloot GS. The effects of aging on lung structure and function. Clin Geriatr Med. 2017;33:447–57.

    PubMed  Google Scholar 

  27. Faner R, Rojas M, Macnee W, Agusti A. Abnormal lung aging in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186:306–13.

    CAS  PubMed  Google Scholar 

  28. Hamsanathan S, Alder JK, Sellares J, Rojas M, Gurkar AU, Mora AL. Cellular senescence: the Trojan horse in chronic lung diseases. Am J Respir Cell Mol Biol. 2019;61:21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Merkt W, Bueno M, Mora AL, Lagares D. Senotherapeutics: targeting senescence in idiopathic pulmonary fibrosis. Semin Cell Dev Biol. 2019;101:104–10.

  30. Rojas M, Mora AL, Kapetanaki M, Weathington N, Gladwin M, Eickelberg O. Aging and lung disease. Clinical impact and cellular and molecular pathways. Ann Am Thorac Soc. 2015;12:S222–7.

    PubMed  PubMed Central  Google Scholar 

  31. Zank DC, Bueno M, Mora AL, Rojas M. Idiopathic pulmonary fibrosis: aging, mitochondrial dysfunction, and cellular bioenergetics. Front Med (Lausanne). 2018;5:10.

    Google Scholar 

  32. Jang JY, Blum A, Liu J, Finkel T. The role of mitochondria in aging. J Clin Invest. 2018;128:3662–70.

    PubMed  PubMed Central  Google Scholar 

  33. Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest. 2017;127:405–14.

    PubMed  PubMed Central  Google Scholar 

  34. Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 2012;26:2175–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen BB, Coon TA, Glasser JR, Zou C, Ellis B, Das T, et al. E3 ligase subunit Fbxo15 and PINK1 kinase regulate cardiolipin synthase 1 stability and mitochondrial function in pneumonia. Cell Rep. 2014;7:476–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D, et al. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med. 2007;204:3173–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ryan JJ, Marsboom G, Fang YH, Toth PT, Morrow E, Luo N, et al. PGC1alpha-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am J Respir Crit Care Med. 2013;187:865–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, et al. Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 2014;124:3987–4003.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C, et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125:521–38.

    PubMed  Google Scholar 

  40. Bueno M, Brands J, Voltz L, Fiedler K, Mays B, St Croix C, et al. ATF3 represses PINK1 gene transcription in lung epithelial cells to control mitochondrial homeostasis. Aging Cell. 2018;17:e12720.

    PubMed Central  Google Scholar 

  41. • Bueno M, Zank D, Buendia-Roldan I, Fiedler K, Mays BG, Alvarez D, et al. PINK1 attenuates mtDNA release in alveolar epithelial cells and TLR9 mediated profibrotic responses. PLoS One. 2019;14(6):e0218003 This study shows that circulating mtDNA is found in patients with several fibrotic interstitial lung diseases and that cell-free mtDNA is sensed by TLR9 in the lung with the subsequent activation not only of inflammatory responses but also expression of the profibrotic factor TGF-β.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jablonski RP, Kim SJ, Cheresh P, Williams DB, Morales-Nebreda L, Cheng Y, et al. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis. FASEB J. 2017;31:2520–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim SJ, Cheresh P, Williams D, Cheng Y, Ridge K, Schumacker PT, et al. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem. 2014;289:6165–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Larson-Casey JL, Deshane JS, Ryan AJ, Thannickal VJ, Carter AB. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity. 2016;44:582–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Alvarez D, Cardenes N, Sellares J, Bueno M, Corey C, Hanumanthu VS, et al. IPF lung fibroblasts have a senescent phenotype. Am J Phys Lung Cell Mol Phys. 2017;313:L1164–73.

    Google Scholar 

  46. Gazdhar A, Lebrecht D, Roth M, Tamm M, Venhoff N, Foocharoen C, et al. Time-dependent and somatically acquired mitochondrial DNA mutagenesis and respiratory chain dysfunction in a scleroderma model of lung fibrosis. Sci Rep. 2014;4:5336.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jaeger VK, Lebrecht D, Nicholson AG, Wells A, Bhayani H, Gazdhar A, et al. Mitochondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis. Sci Rep. 2019;9:5500.

    PubMed  PubMed Central  Google Scholar 

  48. Bindu S, Pillai VB, Kanwal A, Samant S, Mutlu GM, Verdin E, et al. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am J Phys Lung Cell Mol Phys. 2017;312:L68–78.

    Google Scholar 

  49. Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell. 2010;40:893–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. • Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 2016;7:69321–36 This study show that the mitochondrial deacetylase SIRT3 has cell-intrinsic potent anti-fibrotic properties in fibroblasts and the potential role of mitohcondrila interventions in SSc.

    PubMed  PubMed Central  Google Scholar 

  51. Zhao X, Kwan JYY, Yip K, Liu PP, Liu FF. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 2020;19:57–75.

    CAS  PubMed  Google Scholar 

  52. Zhao H, Dennery PA, Yao H. Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Phys Lung Cell Mol Phys. 2018;314:L544–54.

    CAS  Google Scholar 

  53. Zhao YD, Yin L, Archer S, Lu C, Zhao G, Yao Y, et al. Metabolic heterogeneity of idiopathic pulmonary fibrosis: a metabolomic study. BMJ Open Respir Res. 2017;4:e000183.

    PubMed  PubMed Central  Google Scholar 

  54. Zhu H, Chen W, Liu D, Luo H. The role of metabolism in the pathogenesis of systemic sclerosis. Metabolism. 2019;93:44–51.

    CAS  PubMed  Google Scholar 

  55. Nishiyama Y, Yamamoto Y, Dobashi H, Kameda T. Clinical value of 18F-fluorodeoxyglucose positron emission tomography in patients with connective tissue disease. Jpn J Radiol. 2010;28:405–13.

    PubMed  Google Scholar 

  56. Xie N, Tan Z, Banerjee S, Cui H, Ge J, Liu RM, et al. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med. 2015;192:1462–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xie N, Cui H, Ge J, Banerjee S, Guo S, Dubey S, et al. Metabolic characterization and RNA profiling reveal glycolytic dependence of profibrotic phenotype of alveolar macrophages in lung fibrosis. Am J Phys Lung Cell Mol Phys. 2017;313:L834–44.

    Google Scholar 

  58. Wang Y, Zhang S, Liang Z, Feng M, Zhao X, Qin K, et al. Metformin attenuates bleomycin-induced scleroderma by regulating the balance of Treg/Teff cells and reducing spleen germinal center formation. Mol Immunol. 2019;114:72–80.

    CAS  PubMed  Google Scholar 

  59. Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24:1121–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Murrell DF. A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol. 1993;28:78–85.

    CAS  PubMed  Google Scholar 

  61. Luo JY, Liu X, Jiang M, Zhao HP, Zhao JJ. Oxidative stress markers in blood in systemic sclerosis: a meta-analysis. Mod Rheumatol. 2017;27:306–14.

    CAS  PubMed  Google Scholar 

  62. Tikly M, Channa K, Theodorou P, Gulumian M. Lipid peroxidation and trace elements in systemic sclerosis. Clin Rheumatol. 2006;25:320–4.

    PubMed  Google Scholar 

  63. Riccieri V, Spadaro A, Fuksa L, Firuzi O, Saso L, Valesini G. Specific oxidative stress parameters differently correlate with nailfold capillaroscopy changes and organ involvement in systemic sclerosis. Clin Rheumatol. 2008;27:225–30.

    PubMed  Google Scholar 

  64. Murgia F, Svegliati S, Poddighe S, Lussu M, Manzin A, Spadoni T, et al. Metabolomic profile of systemic sclerosis patients. Sci Rep. 2018;8:7626.

    PubMed  PubMed Central  Google Scholar 

  65. Ogawa F, Shimizu K, Muroi E, Hara T, Hasegawa M, Takehara K, et al. Serum levels of 8-isoprostane, a marker of oxidative stress, are elevated in patients with systemic sclerosis. Rheumatology (Oxford). 2006;45:815–8.

    CAS  Google Scholar 

  66. Crow MK. Mitochondrial DNA promotes autoimmunity. Science. 2019;366:1445–6.

    CAS  PubMed  Google Scholar 

  67. Bao W, Xia H, Liang Y, Ye Y, Lu Y, Xu X, et al. Toll-like receptor 9 can be activated by endogenous mitochondrial DNA to induce podocyte apoptosis. Sci Rep. 2016;6:22579.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell. 2016;165:551–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sagan L. On the origin of mitosing cells. J Theor Biol. 1967;14:255–74.

    CAS  PubMed  Google Scholar 

  71. Ryu C, Sun H, Gulati M, Herazo-Maya JD, Chen Y, Osafo-Addo A, et al. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196:1571–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. • Fang F, Marangoni RG, Zhou X, Yang Y, Ye B, Shangguang A, et al. Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor beta-dependent fibroblast activation. Arthritis Rheum. 2016;68:1989–2002 This study show that TLR9 expression and signaling are persistently increased in SSc skin biopsy specimens and in mice TLR9 is up-regulated in lesional myofibroblasts in experimentally induced models of fibrosis.

    CAS  Google Scholar 

  73. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–5.

    CAS  PubMed  Google Scholar 

  75. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J Exp Med. 2016;213:697–713.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen L, Duvvuri B, Grigull J, Jamnik R, Wither JE, Wu GE. Experimental evidence that mutated-self peptides derived from mitochondrial DNA somatic mutations have the potential to trigger autoimmunity. Hum Immunol. 2014;75:873–9.

    CAS  PubMed  Google Scholar 

  79. Liu RM, Liu G. Cell senescence and fibrotic lung diseases. Exp Gerontol. 2020;132:110836.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernard K, Thannickal VJ. NADPH oxidases and aging models of lung fibrosis. Methods Mol Biol. 1982;2019:487–96.

    Google Scholar 

  81. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014;6:231ra247.

    Google Scholar 

  82. Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63.

    PubMed  PubMed Central  Google Scholar 

  84. Lepri G, Hughes M, Bruni C, Cerinic MM, Randone SB. Recent advances steer the future of systemic sclerosis toward precision medicine. Clin Rheumatol. 2020;39:1–4.

    PubMed  Google Scholar 

  85. Martyanov V, Kim GJ, Hayes W, Du S, Ganguly BJ, Sy O, et al. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLoS One. 2017;12:e0187580.

    PubMed  PubMed Central  Google Scholar 

  86. Martyanov V, Whitfield ML, Varga J. Senescence signature in skin biopsies from systemic sclerosis patients treated with Senolytic therapy: potential predictor of clinical response? Arthritis Rheum. 2019;71:1766–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana L. Mora.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, M., Papazoglou, A., Valenzi, E. et al. Mitochondria, Aging, and Cellular Senescence: Implications for Scleroderma. Curr Rheumatol Rep 22, 37 (2020). https://doi.org/10.1007/s11926-020-00920-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00920-9

Keywords

Navigation